首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ion chromatography of sulfide, sulfite, sulfate and thiosulfate in a mixture is often difficult because of instability of sulfide and sulfite, poor separation of sulfide from common anions such as bromide or nitrate and similar elution-times for sulfite and sulfate. An ion-pair chromatographic method for the determination of these sulfur anions has been established by stoichiometric conversion of sulfide and sulfite into stable thiocyanate and sulfate, respectively, prior to the chromatographic run. Sulfate, thiosulfate and thiocyanate were resolved on an octadecylsilica column with an acetonitrile-water mobile phase containing tetrapropylammonium salt (TPA) as an ion-paring reagent, and thiosulfate and thiocyanate in the effluent could be measured with a photometric detector (220 nm) and sulfate with a suppressed conductivity detector. When an acetonitrile-water (6:94, v/v) mobile phase (pH 5.0) containing 15 mM TPA and small amounts of acetic acid was used at a flow-rate of 0.6 ml min(-1), the three anions could be eluted within 32 min. Calibration plots of peak height versus concentration for sulfide (detected as thiocyanate) and thiosulfate gave straight lines up to 35 and 60 microM, respectively. The calibration plot for sulfide coincided with that obtained by using thiocyanate. A calibration plot for sulfite, measured as sulfate, was also linear up to 135 microM and was in accord with that of sulfate. Each calibration plot gave a correlation coefficient greater than 0.999. For six replicates obtained for a mixture of 30.0 microM sulfide, 50.0 microM sulfite, 50.0 microM sulfate and 20.0 microM thiosulfate, the proposed method gave a mean value of 30.1 microM with a standard deviation (SD) of 0.77 microM and a relative standard deviation (RSD) of 2.6% for sulfide, 101 microM (SD = 3.5 microM, RSD = 3.5%) for the total of sulfite and sulfate and 20.1 microM (SD = 0.44 microM, RSD = 2.2%) for thiosulfate. Recoveries for sulfide, sulfite plus sulfate, and thiosulfate in hot-spring water samples using the proposed method were found to be quantitative.  相似文献   

2.
The synergistic effect of Ni(II) and Co(II) on the sulfite induced autoxidation of Cu(II)/tetraglycine was investigated spectrophotometrically at 25.0 degrees C, pH = 9.0, 1 x 10(-5) mol dm(-3) < or = [S(IV)] < or = 8 x 10(-5) mol dm(-3), [Cu(II)]= 1 x 10(-3) mol dm(-3), 1 x 10(-6) mol dm(-3) < or = [Ni(II)] or [Co(II)] < or = 1 x 10(-4) mol dm(-3), [O2] approximately 2.5 x 10(-4) mol dm(-3), and 0.1 mol dm(-3) ionic strength. In the absence of added nickel(II) or cobalt(II), the kinetic traces of Cu(III)G4 formation show a large induction period (about 3 h). The addition of trace amounts of Ni(II) or Co(II) increases the reaction rate significantly and the induction period drastically decreases (less than 0.5 s). The effectiveness of Cu(III)G4 formation becomes much higher. The metal ion in the trivalent oxidation state rapidly oxidizes SO3(2-) to SO3*-, which reacts with oxygen to produce SO5*-. The strongly generated oxidants oxidize Cu(II)G4 to Cu(III).  相似文献   

3.
Voltammetric determination of niclosamide at a glassy carbon electrode   总被引:1,自引:0,他引:1  
Alemu H  Wagana P  Tseki PF 《The Analyst》2002,127(1):129-134
A very sensitive and selective procedure was developed for the determination of niclosamide based on square-wave voltammetry at a glassy carbon electrode. Cyclic voltammetry was used to investigate the electrochemical reduction of niclosamide at a glassy carbon electrode. Niclosamide was first irreversibly reduced from NO2 to NHOH at -0.659 V in aqueous buffer solution of pH 8.5. Reversible and well defined peaks at -0.164 V and -0.195 V (vs. Ag/AgCl) were obtained that are responsible for two electron peaks between NHOH and NO. Following optimisation of the voltammetric parameters, pH and reproducibility, a linear calibration curve over the range 5 x 10(-8)-1 x 10(-6) mol dm(-3) was achieved. The detection limit was found to be 2.05 x 10(-8) mol dm(-3) niclosamide. For eight successive determinations of 5 x 10(-7) mol dm(-3) niclosamide, a relative standard deviation of 2.4% was obtained. This voltammetric method was applied to the direct determination of niclosamide in tablets. The results of the analysis suggest that the proposed method has promise for the routine determination of niclosamide in the products examined.  相似文献   

4.
A sensitive and specific high performance liquid chromatographic method for the determination of sulfide, sulfite, and thiosulfate was established. Inorganic sulfur anions were converted into fluorescent derivatives with monobromobimane. The derivatives were separated on a coupled column chromatography with a reversed-phase octadecyl silica column connected with a weakly basic anion exchanger column by isocratic elution with acetic acid solution (pH 3)-acetonitrile (13:3, v/v) containing 25 mM NaClO4. The method was applied to the determination of bound sulfide and sulfite and thiosulfate in normal human serum. Thiosulfate could be determined directly by use of an ultrafiltered sample. For the determination of bound sulfide and sulfite, the pretreatment step with continuous flow gas dialysis was effective for the sample after releasing sulfide and sulfite by reduction with dithiothreitol. The limits of quantification by the present method were 0.05 microM for thiosulfate, 0.5 microM for bound sulfide, and 0.2 microM for bound sulfite.  相似文献   

5.
The stability constants for copper(I) chelate with 2,9-dimethyl-1,10-phenanthroline are determined by thermal lensing, and the advantages over spectrophotometric determination of stability constants are shown. Changes in the photometric reaction when moving from the microgram to the nanogram level of reactants are discussed. The conditions for the thermal-lens determination of copper are optimized. The limit of detection of copper is 3x10(-8) mol dm(-3), and the linear calibration range 1x10(-7)-1x10(-5) mol dm(-3).  相似文献   

6.
Khodari M  Ghandour M  Taha AM 《Talanta》1997,44(3):305-310
Cathodic stripping voltammetry was used to determine 5-fluorouracil (5-FU) in the presence of traces of Cu(II). It was found that the addition of 5 x 10(-9) mol dm(-3) Cu(II) to the measurement cell greatly enhanced the peak current of the adsorbed molecule. Different parameters were tested to optimize the conditions for the determination of 5-FU. The adsorbed form is reduced irreversibly. It was observed that by controlling the deposition potential, the technique could be directed to the determination of Cu(II) or the drug. The linear range was from 5 x 10(-9) to 6 x 10(-8) mol dm(-3) for 5-FU and from 6 x 10(-9) to 5 x 10(-8) mol dm(-3) for Cu(II). Detection limits of 4.6 x 10(-10) and 5 x 10(-10) mol dm(-3) were obtained for 5-FU and Cu(II), respectively. The method was applied to urine and molecules or ions which may interfere were studied.  相似文献   

7.
Koh T  Sugimoto T  Matsui M  Miura Y 《Talanta》1997,44(4):577-583
A highly sensitive method is proposed for the determination of thiosulfate based on the oxidation of aqueous thiosulfate (100 or 200 ml) by iodide in 4 ml of carbon tetrachloride. The excess of iodine was extracted into 8 ml of aqueous iodide solution as triiodide to be measured spectrophotometrically; the thiosulfate could therefore be indirectly highly concentrated and determined selectively. The side-reaction of thiosulfate in a large volume of solution with the hypoiodite formed from the iodine in carbon tetrachloride could be compensated for by adding a certain amount of extra thiosulfate. A linear calibration graph with a negative slope was obtained over the concentration ranges 1.1 x 10(-7)-1 x 10(-5) M (12 ppb-1.12 ppm) for 100 ml of thiosulfate solution and 6 x 10(-8) - 5 x 10(-6) M (6.7 ppb-0.56 ppm) for 200 ml of thiosulfate solution. The proposed method was successfully applied to the determination of various amounts of thiosulfate in hot-spring and lake-water samples.  相似文献   

8.
Salimi A  Pourbeyram S  Amini MK 《The Analyst》2002,127(12):1649-1656
A highly sensitive and fast responding sensor for the determination of thiosulfate, sulfite, sulfide and dithionite is described. It consists of a chemically modified carbon ceramic composite electrode (CCE) containing [Ru(bpy)(tpy)Cl]PF6 complex that was constructed by the sol-gel technique. A reversible redox couple of Ru(II)/Ru(III) was observed as a solute in acetonitrile solution and as a component of carbon based conducting composite electrode. Electrochemical behavior and stability of modified CCE were investigated by cyclic voltametry, the apparent electron transfer rate constant (kappa(S)) and transfer coefficient (a) were determined by cyclic voltametry which were about 28 s(-1) and 0.43 respectively. Electrocatalytic oxidation of S(2-), SO3(2-), S2O4(2-) and S2O3(2-) were effective at the modified electrode at significantly reduced overpotentials and in the pH range 1-11. Optimum pH values for amperometric detection of thiosulfate, dithionite, sulfide and sulfite are 7, 9, 2 and 2. Under the optimized conditions the calibration curves are linear in the concentration ranges 1-500, 3-80, 2-90 and 1-100 microM for S2O3(2-), SO3(2-), S2- and S2O4(2-) determination. The detection limit (signal to noise is 3) and sensitivity are 0.5 and 12, 2.8 and 6, 1.6 and 8, and 0.65 microM and 80 nA microM(-1) for thiosulfate, sulfite, sulfide and dithionite detection. The modified carbon ceramic electrode doped with Ru-complex shows good reproducibility, a short response time (t < 2 s), remarkable long term stability (> 6 month) and especially good surface renewability by simple mechanical polishing (RSD for eight successive polishing is 2%). The advantages of this sulfur compound amperometric detector based on ruthenium doped CCE are high sensitivity, inherent stability at a broader pH range, excellent catalytic activity, less expense and simplicity of preparation in comparison with recently published papers. This sensor can be used as a chromatographic detector for analysis of sulfur derivatives.  相似文献   

9.
Sudo T  Igarashi S 《Talanta》1996,43(2):233-237
A new homogeneous liquid-liquid extraction using a fluorocarbon ionic surfactant, Zonyl FSA (FSA), having a diethylthioether group as a spacer between the perfluoroalkyl group and carboxyl group has been developed. In this FSA method, the phase separation phenomena were observed at mild pH (below pH 6). Moreover, by using this extraction method as a preconcentration, a highly sensitive spectrofluorometric determination of chlorophyll a was established. The results for the standard chlorophyll a were as follows. The concentration factor (V(w)/V(o)) was 200 (water phase, V(w), 20 cm(3), water-immiscible phase, V(o), 100 mul), the distribution ratio, log D, was 4.85, the extraction percentage, E, was 99.7%, and the procedure time was approximately 30 min. The calibration curve was linear in the concentration range 2 x 10(-11)-3 x 10(-7) mol dm(-3) and the detection limit (S/N=3) was 1 x 10(-11) mol dm(-3). The relative standard deviation was 0.72% for 10(-8) mol dm(-3) (five determinations).  相似文献   

10.
A flow-injection analysis (FIA) of paroxetine hydrochloride (PRX), a selective serotonin reuptake inhibitor (SSRI) currently used as an antidepressant drug, is described. A 0.1 mol dm(-3) acetate buffer at pH 3.07 was found to be thebest solvent. The analyte was detected at 293 nm. The calibration equation was linear over the range of 1.07 x 10(-6) to 5.35 x 10(-6) mol dm(-3). The limit of detection (LOD) and the limit of quantitation (LOQ) were 3.2 x 10(-7) and 9.5 x 10(-7) mol dm(-3), respectively. The proposed method was applied to the determination of PRX in pharmaceutical preparations. The results were compared with those obtained by a conventional batchwise UV-spectrophotometry.  相似文献   

11.
A new capillary electrophoretic (CE) method was developed for the simple and selective determination of sulfite. The proposed method is based on the in-capillary derivatization of sulfite with iodine using the zone-passing technique and direct UV detection of iodide formed. The optimal conditions for the separation and derivatization reaction were established by varying concentration of iodine, electrolyte pH and applied voltage. The optimised separations were carried out in 20 mmol l(-1) Tris-HCl electrolyte (pH 8.5) using direct UV detection at 214 nm. Experimental results showed that the injection of the iodine zone from anodic end of the capillary gives significantly better precision. Common UV absorbing anions such as Br-, l-, S2O3(2-), NO3-, NO2-, SCN- did not give any interferences. Valid calibration (r2=0.998) is demonstrated in the range 1 x 10(-5) - 8 x 10(-4) mol l(-1) of sulfite. The detection limit (SIN=3) was 2 x 10(-6) mol l(-1). The proposed system was applied to the determination of free sulfite in wines. The recovery tests established for wine samples were within the range 92-103%. The CE results were compared with those obtained by iodometric titration technique.  相似文献   

12.
Meng H  Wu F  He Z  Zeng Y 《Talanta》1999,48(3):571-577
A chemiluminescence (CL) detection for the determination of sulfite using the reaction of Ru(bipy)(3)(2+) (bipy=2,2'-bipyridyl) -SO(3)(2-)-KMnO(4) is described. The concentration of sulfite is proportional to the CL intensity from 5.0x10(-8) to 1.25x10(-4) mol l(-1). The limit of detection is 2.5x10(-8) mol l(-1) and the relative standard deviation is 4.9% for the 2x10(-5) mol l(-1) sulfite solution in six repeated measurements. This method has been successfully applied to the determination of sulfite in sugar and sulfur dioxide in air by using triethanolamine (TEA) as the absorbent material.  相似文献   

13.
Coprecipitation with terbium hydroxide quantitatively recovered trace amounts of chromium(III), copper(II) and lead(II) at pH 8.4 - 10.8, 8.0 - 11.5 and 8.7 - 11.5, respectively. The precipitate was dissolved in 0.85 mol dm(-3) nitric acid, and the analytes were determined by graphite-furnace atomic absorption spectrometry (GF-AAS). The presence of terbium (up to 7 g dm(-3)) did not interfere with the determination. The detection limits were 0.3 microg dm(-3) for chromium, 0.4 microg dm(-3) for copper and 0.5 microg dm(-3) for lead, when the analytes in 200 cm3 of the sample solution were concentrated into 10 cm3. The ions added to river or seawater were quantitatively recovered. Chromium and copper in a contaminated river water were successfully determined.  相似文献   

14.
A simple and highly sensitive spectrophotometric method for the determination of biologically active thiols based on the fading of eosin-silver(I)-adenine ternary complex was established. In the determination of 6-mercaptopurine (MP), Beer's law was obeyed in the range 0.02-0.30 microg ml(-1), with an effective molar absorptivity at 562 nm and the relative standard deviation being 3.5 x 10(5) dm3 mol(-1) cm(-1) and 0.72% (n = 5). Analytical data for various biologically active thiols were determined with the proposed method. This method is about 5-10 times more sensitive than the conventional spectrophotometric methods. A compound having a disulfide bond (-S-S-), such as cystine, could also be determined by the conversion of disulfides to free thiols with the sulfite ion. The procedure was successfully applied to assays of various biologically active thiols in actual medicines.  相似文献   

15.
A study of the electrochemical behavior of acrolein at a dropping mercury electrode using different polarographic techniques is described. Theoretical studies of the reversibility of the wave of acrolein were carried out using two different polarographic techniques: direct current tast and differential pulse. Differential pulse polarography may be used to determine acrolein concentration in a Britton-Robinson buffer solution of pH 10 in the ranges 2 x 10(-7)10(-8) and 5 x 10(-8)-10(-4) mol dm(-3) and a coefficient of variation of 1.7% for a concentration of 10(-5)mol dm(-3). A flow injection method with amperometric detection at a potential of -1.4V using a mercury electrode is also described. Before each injection, any drop hanging from the tip of the capillary needs to be dislodged and a new electrode drop dispensed; three different drop sizes were tested. A linear relationship between peak intensity and acrolein concentration was obtained in the range 10(-5)-10(-7) mol dm(-3), with a detection limit of 9.8 x 10(-8) mol dm(-) 3 and a coefficient of variation of 2.9% for a 2 x 10(-7) mol dm(-3) concentration. Several organic and inorganic species were tested in order to ascertain whether they interfered with the signal for acrolein. The proposed methods were applied to the determination of acrolein in seawater samples.  相似文献   

16.
A flow-injection analysis (FIA) for the determination of dopamine has been developed. The method is based on the inhibition effect of dopamine on the iron(II)-induced chemiluminescence (CL) of 10,10'-dimethyl-9,9'-biacridinium dinitrate (lucigenin). The presence of a non-ionic surfactant, polyoxyethylene (23) lauryl ether (Brij 35), caused an increase in the inhibition effect. The present method allows the determination of dopamine over the range 1x10(-8)-2x10(-7) mol dm(-3). The relative standard deviation was 0.7% for eight determinations of 6x10(-8) mol dm(-3) dopamine. The detection limit (S/N=3) was 2x10(-9) mol dm(-3) with the sampling rate of 40 samples h(-1). The effect of other catecholamines and compounds of similar structure on the lucigenin CL reaction was studied: quinone, hydroquinone, norepinephrine, pyrocatechol and l-dopa suppressed the CL intensity.  相似文献   

17.
The aim of this work was to develop a simple, automatic system for the evaluation of cationic surfactants by combining sequential injection analysis and the sensitized effect of cationic surfactants on the reaction between metal ions and chelating dyes. This reaction is based on the increase in absorbance of the complex formed among molybdenum, bromopyrogallol red and increasing concentrations of cationic surfactants. Under optimum conditions, two calibration plots were obtained for a concentration range between 2.50 x 10(-7) mol dm(-3) (detection limit) and 5.00 x 10(-4) mol dm(-3) of cetylpyridinium chloride, used as standard. Solubilization of water insoluble complexes formed for concentrations of cationic surfactants greater than 1.00 x 10(-4) mol dm(-3) were successfully achieved with Triton X-405. RSD values lower than 5.0% were obtained in all cases. The quality of the results obtained for 18 water samples were evaluated by comparison with conventional methods, with no statistically significant differences for a 95% confidence level.  相似文献   

18.
The determination of trace amounts of boron in steel by reversed-phase high-performance liquid chromatography (HPLC) is described. As a derivatizing reagent for the HPLC determination of boron, 8-hydroxy-1-(salicylideneamino)-3,6-naphtalenedisulfonic acid (azomethine-H) was used with a spectrophotometric detection. A peak of boron-azomethine-H chelate was resolved from other peaks using an acetonitrile-water (29 + 71 m/m) eluent containing 8 x 10(-3) mol kg(-1) tetrabutylammonium bromide and 5 x 10(-3) mol kg(-1) acetate buffer (pH 5.0). The lower determination limit (10sigma) of boron was 3.3 x 10(-8) mol dm(-3) for a solution injected into HPLC, which is translated to 0.09 microgB/g when 0.1 g of a steel sample was subjected to the analysis. The analytical results of certified steel samples were in good agreement with the guaranteed values. The addition of ethylenediamine-N,N,N',N'-tetraacetate as a masking agent for the iron(III) matrix with the optimized eluent enables one to achieve the direct determination of trace amounts of boron in such steel sample solutions without any tedious matrix removal or preconcentration.  相似文献   

19.
A procedure for the determination of morphine in process streams by sequential injection analysis based on the chemiluminescence reaction of morphine with acidic potassium permanganate in the presence of sodium hexametaphosphate is presented. The chemiluminescence emission has been monitored using an in-house detection system which consisted of a fibre optic flowthrough cell and a sensitive, low dark current, photomultiplier tube. The calibration graph (range 2 x 10(-8) to 1 x 10(-4) mol/l) was not linear over the entire range of concentration, with a polynomial equation of best fit of y = 1.0 x 10(15) x(3) - 2.2 x 10(11) x(2) + 1.3 x 10(7) x - 8.3. The calibration function approximates linearity over the concentration range 2.5 x 10(-6) to 3.0 x 10(-5) mol/l where the slope of the log-log plot is 1.09 +/- 0.16. The detection limit was estimated at about 10(-8) mol/l from the response of the lowest calibration standard (2.5 x 10(-8) mol/l) which gave a signal to noise ratio of 3 : 1. Although the structurally related codeine did not interfere significantly the results suggest that this method may be susceptible to matrix effects, dependent on the location of sampling from the process stream.  相似文献   

20.
A sensitive voltammetric method has been developed for the determination of total or single species of sulfur anions containing sulfide, sulfite and thiosulfate. The method is based on the catalytic effect of tris(2,2'-bipyridyl)Ruthenium(II) (Ru(bpy)2+ 2) as a homogeneous mediator on the oxidation of those anions at the surface of a glassy carbon electrode. A reversible redox couple of Ru(II)/Ru(III) were observed as a solute in aqueous solution. Cyclic voltammetry study showed that the catalytic current of the system depends on the concentration of the anions. Optimum pH values for voltammetric determination of sulfite, thiosulfate and sulfide has been found to be 5.6, 10.0 and 10.0, respectively. Under the optimized conditions the calibration curves have been obtained linear in the concentration ranges of 0.8–500.0, 0.4–1000.0 and 0.5–5000.0 µmol L− 1 of SO32−, S2O32− and S2−, respectively. The detection limits have been calculated to be 0.40, 0.17 and 0.33 µmol L− 1 for SO32−, S2O32− and S2−, respectively. The diffusion coefficients of sulfite and thiosulfate have been estimated using chronoamperometry. The chronoamperometric method also has been used to determine the catalytic rate constant for catalytic reaction of the Ru(bpy)2+ 2 with sulfite and thiosulfate. Finally the proposed method has been used for the determination of total sulfur contents in real samples of water and wastewater. Moreover the sulfite content in sugar and sulfur dioxide in air has been determined with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号