首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
运用密度泛函理论(DFT)的杂化密度泛函B3LYP方法,在6-311G基组水平上对SinMg(n=1~12)团簇进行了构型优化、频率分析与电子性质计算.同时讨论了团簇的平均结合能、能级间隙、二阶能量差分、自然电子布居、极化率.研究结果表明:SinMg(n=1~12)团簇的基态绝大多数为立体结构.n=1时,体系的基态为自旋三重度,n≥2时,则为单重态.镁原子的掺入使得主团簇的电子性质发生了明显的变化,掺杂使体系的平均结合能降低,能隙减小,化学硬度减小,电子亲和能增大.电子总是从Mg原子向Si原子转移.团簇中原子之间的成键相互作用随n的增大而增强,团簇的电子结构随n的增大而趋于紧凑.  相似文献   

2.
运用密度泛函理论(DFT)的杂化密度泛函B3LYP方法,在6-311G基组水平上对 团簇进行了构型优化、频率分析与电子性质计算.同时讨论了团簇的平均结合能、能级间隙、二阶能量差分、自然电子布居、极化率.研究结果表明: 团簇的基态绝大多数为立体结构. 时,体系的基态为自旋三重度, 时,则为单重态.镁原子的掺入使得主团簇的电子性质发生了明显的变化,掺杂使体系的平均结合能降低,能隙减小,化学硬度减小,电子亲和能增大.电子总是从 原子向 原子转移.团簇中原子之间的成键相互作用随n的增大 而增强,团簇的电子结构随n的增大而趋于紧凑.  相似文献   

3.
利用密度泛函理论研究了Al12N和Al12B团簇的原子结构和电子性质,通过各种异构体的比较,发现两种掺杂团簇的最低能量结构都是完好的二十面体(Ih)结构,N(B)原子占据在二十面体的中心.高对称性团簇形成稀疏离散的电子态密度和大的电子能隙.在Al-N之间发生较大的电荷转移.因此我们建议把Al12N团簇看作是碱金属超原子,Al12B团簇看作是卤素超原子,用来构造团簇组装固体.  相似文献   

4.
结合遗传算法和CALYPSO软件,采用密度泛函理论,对Mon(n=2-13)及MonC(n=1-12)团簇基态的几何结构与电子结构展开详细研究.通过计算其基态结构的平均键长、平均结合能、二阶差分能、分裂能和前线轨道能级,对基态结构的稳定性随总原子数变化的关系展开了研究.计算结果表明,Mon团簇基态结构的稳定性可通过掺杂单个C原子而提高.综合团簇的二阶差分能、分裂能可知,n=6,9时Mon团簇的稳定性较高,n=4,7,10时MonC团簇的稳定性较高.  相似文献   

5.
本文从第一性原理出发,利用密度泛函理论(DFT)计算了MgBeN(N=1—7)团簇的最低能量结构及其电子性质.计算结果表明,MgBeN(N=1—7)团簇最低能量结构的对称性与单一组分的镀团簇相比有所降低,Mg-Be最近邻原子间距和能隙随团簇尺寸的增加出现了振荡现象,从结构稳定性上来看。N=3是MgBeN(N=1—7)团簇的一个幻数。  相似文献   

6.
基于密度泛函理论的第一性原理方法,采用B3LYP下的赝势基组LanL2DZ,研究了InnAsn(n=1~20)团簇的基态几何结构、相对稳定性、电子性质及其振动光谱.结果表明,当n=5~11时团簇的基态构型为层状结构;当n=12~20时团簇的基态构型为笼状结构.团簇平均结合能、二阶能量差分和HOMO-LUMO能隙均在n=9,12,18出现极大值,说明In9 As9、In12 As12和In18 As918)为幻数团簇.另外,HOMO-LUMO能隙的计算结果表明InnAsn(n=1~20)团簇具有宽带隙半导体特征.  相似文献   

7.
采用密度泛函理论(DFT)中的B3LYP方法得到了(AlB2)m团簇的平衡几何结构. 计算并分析了基态掺杂团簇的平均结合能、电离势、能隙和前线分子轨道. 结果表明:掺杂团簇(AlB2)m (m=1~6)整体上具有较高化学活性,(AlB2)5团簇具有金属特征. Al原子总是向团簇外围扩散并且以配位数较少的方式与主团簇结合,团簇表现出以AlB2分子为基元生长的迹象. B-Al键长大于B-B键长. 电荷总是从Al原子转移到B原子. (AlB2)m团簇中B原子的2p轨道在成键中起主要作用,并使(AlB2)m团簇趋于形成离域π键.  相似文献   

8.
本文从第一性原理出发,利用密度泛函理论(DFT)计算了MgBeN(N=1-7)团簇的最低能量结构及其电子性质.计算结果表明,MgBeN(N=1-7)团簇最低能量结构的对称性与单一组分的铍团簇相比有所降低,Mg-Be最近邻原子间距和能隙随团簇尺寸的增加出现了振荡现象.从结构稳定性上来看,N=3是MgBeN(N=1-7)团簇的一个幻数.  相似文献   

9.
Bn-1Li(n=2~13)掺杂团簇的几何结构和电子性质   总被引:2,自引:1,他引:1  
采用密度泛函理论(DFT)中的B3LYP方法得到了Bn-1Li (n=2~13)小团簇的平衡几何结构.计算并分析了基态掺杂团簇的平均结合能、能量二阶差分、能级间隙、电离势、振动光谱和极化率.结果表明Li原子总是处于主团簇的外围并且以配位数最少的方式与主团簇结合,有的甚至是吸附在主团簇上面.随着锂原子所占百分比的降低,掺杂团簇的稳定性迅速提高.高浓度的掺杂(Li,B比为1∶1或1∶2)可以大幅度提高团簇的化学活性和金属性,但同时会降低其稳定性.B3Li和B5Li是幻数团簇.  相似文献   

10.
采用密度泛函理论(DFT)中的B3LYP方法得到了Bn-1Li (n=2~13)小团簇的平衡几何结构. 计算并分析了基态掺杂团簇的平均结合能、能量二阶差分、能级间隙、电离势、振动光谱和极化率. 结果表明:Li原子总是处于主团簇的外围以配位数最少的方式与主团簇结合,有的甚至是吸附在主团簇上面. 随着锂原子所占百分比的降低,掺杂团簇的稳定性迅速提高. 高浓度的掺杂(Li, B比为1:1或1:2)可以大幅度提高团簇的化学活性和金属性,但同时会降低其稳定性. B3Li和B5Li是幻数团簇.  相似文献   

11.
采用密度泛函理论的B3LYP方法,获得了BenLi(n=1~12)掺杂团簇的基态结构.同时计算相应的平均结合能、离解能、能量二阶有限差分和能隙.结合最高分子占据轨道的电子密度分析了掺杂团簇的成键特性,并与单一组元的BeN(N=2~13)团簇进行对比.结果表明n=4和9是团簇的幻数;随着尺寸n的增加,BenLi团簇中Be-Li间的相互作用由类共价键过渡到类离子键.  相似文献   

12.
基于密度泛函理论(DFT),我们研究了SinB(n=1~12)团簇的稳定性.结果表明:SinB的基态构型是在Sin-1B的基态或亚稳态构型上带帽一个Si原子而得到;随着团簇尺寸的增大,B原子逐渐从吸附在Sin团簇的表面位置移动到Sin团簇笼内;掺杂B原子提高了纯硅团簇的稳定性;电子总是从Si向B转移,B原子所带的电荷数不仅与B原子的配位数有关,还与SinB团簇的基态结构密切相关.  相似文献   

13.
基于密度泛函理论的第一性原理方法,采用B3LYP下的赝势基组LanL2DZ,研究了InnAsn (n=1-20)团簇的基态几何结构、相对稳定性、电子性质及其振动光谱. 结果表明,当n=5-11时团簇的基态构型为层状结构; 当n=12-20时团簇的基态构型为笼状结构. 团簇平均结合能、二阶能量差分和HOMO-LUMO能隙均在n=9,12,18出现极大值,说明In9As9、In12As12和In18As18为幻数团簇. 另外,HOMO-LUMO能隙的计算结果表明InnAsn (n=1-20)团簇具有宽带隙半导体特征.  相似文献   

14.
利用密度泛函理论对MgBen(n=2-12)团簇的结构和电子性质进行了研究. 较高的能隙和结合能都表明,3和9是团簇的幻数;随着团簇尺寸的增加,Be原子间的相互作用由范德瓦尔斯到共价键以及金属键过渡. 与Be主团簇相比,MgBen(n=2-12)团簇较早地出现了金属性. 通过电子性质的分析发现,掺杂Mg原子降低了主团簇的稳定性.  相似文献   

15.
本文从第一性原理出发,利用密度泛函理论(DFT)计算了Li2BeN(N=1~10)团簇的最低能量结构及其电子性质.计算结果表明,Li2BeN(N=1~10)团簇最低能量结构的对称性与单一成分的铍团簇相比有所下降,能量二阶有限差分随团簇尺寸的增加出现了奇偶振荡现象.从结构稳定性上来看,N=9是Li2BeN(N=1~10)团簇的一个幻数.我们同时发现了团簇中从Be到Li的电荷转移以及小的Li2BeN(N≤6)团簇中类范德瓦尔斯相互作用和共价相互作用共存的现象.  相似文献   

16.
Bn(n =2-15)团簇的几何结构和电子性质   总被引:5,自引:0,他引:5       下载免费PDF全文
应用密度泛函理论中的B3LYP方法计算并分析了不同生长模式下Bn(n= 2-15)团簇的几何结构及电子性质.同时,比较和讨论了不同生长模式下硼团簇的原子束缚能、能级间隙和第一电离势.研究表明:直线构型稳定性最低,金属性较强,尤其在n=8时能隙仅有0.061eV,说明该团簇已具有金属特征.平面或准平面构型稳定性最高,非金属性强.立体构型的稳定性与金属性介于直线和平面构型之间.另外,还讨论了基态团簇的束缚能、能量二阶差分、能级间隙和第一电离势随团簇尺寸的变化,结果表明B12与B14是幻数团簇.  相似文献   

17.
第一性原理计算ZrnFe(n=2-13)团簇的基态结构及其磁性   总被引:1,自引:1,他引:1       下载免费PDF全文
从第一性原理出发,利用密度泛函理论中的广义梯度近似对ZrnFe(n=2-3)团簇进行了结构优化、能量和频率计算.在充分考虑自旋多重度的前提下,对每一具体尺寸的团簇,得到了多个平衡构型,并根据能量高低确定了团簇的基态结构.综合团簇的结合能、二阶能量差分以及团簇的最高占据轨道和最低未占据轨道间的能隙可知Zr5Fe,Zr7Fe和Zr12Fe团簇的稳定性相对较高,Zr12Fe团簇的结构是具有Ih对称性的正二十面体,而且Zr12Fe的稳定性在所有团簇中是最高的.另外,不仅Zr5Fe,Zr7Fe和Zr12Fe团簇的稳定性相对较高,而且它们均为磁性团簇(而Zrn团簇的磁矩在n≥5时已经发生了淬灭),由此可知通过选择合适的掺杂元素可能得到高稳定的磁性团簇.从Mulliken布居分析结果可知,除了在Zr12Fe团簇中Fe原子失去少量电荷外,其他团簇中Fe原子均从Zr原子那里得到了一定量电荷,即Fe原子在ZrnFe(n=2-3,n≠12)团簇中是电子受体.  相似文献   

18.
使用卡里普索(CALYPSO)预测团簇可能结构,运用密度泛函理论(DFT)的杂化密度泛函B3LYP,对PdSi_n(n=1-15)团簇的几何结构与电子性质进行了计算,并讨论了团簇的平均结合能、能隙、二阶能量差分以及电子自然布局和极化率.研究结果表明:PdSi_n(n=1-15)团簇的基态构型由平面结构向立体结构演化,最终形成笼形结构;在Sin中掺杂Pd原子增强了团簇的稳定性;PdSi_4与PdSi_(12)团簇是幻数结构,PdSi_4的稳定性和密堆性最好;NCP和NEC分析表明,在PdSi_n基态团簇中,电荷从Si原子向Pd原子转移,在Pd原子内部发生了spd杂化;Si-Si键之间较强的相互作用力是PdSi_4和PdSi_(12)团簇基态结构更加稳定的原因;PdSi_n团簇中原子间的相互作用伴随n值的增大而不断增强.  相似文献   

19.
文章研究了小尺寸的(ZnSe)n团簇(n=2-16)的结构和电子性质.通过手工搭建得到团簇结构,用DMol软件包进行结构优化和能量计算,最后分析计算结果 .研究结果表明,对于n=2-4,平面环状结构的能量最低;对于n=5,非平面环状结构的能量最低;对于n=6-12,空心笼状结构的能量最低;对于n=13,核-壳笼状结构的能量最低;对于n=14-16,依旧是空心笼状结构的能量最低.通过分析(ZnSe)_n团簇(n=2-16)的电子性质,我们可以得到,(ZnSe)_9团簇、(ZnSe)_(12)团簇具有很好的稳定性.  相似文献   

20.
基于密度泛函理论(DFT),我们研究了SinB(n=1~12)团簇的稳定性.结果表明:SinB的基态构型是在Sin-1B的基态或亚稳态构型上带帽一个Si原子而得到;随着团簇尺寸的增大,B原子逐渐从吸附在Sin团簇的表面位置移动到Sin团簇笼内;掺杂B原子提高了纯硅团簇的稳定性;电子总是从Si向B转移,B原子所带的电荷数不仅与B原子的配住数有关,还与SinB团簇的基态结构密切相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号