共查询到20条相似文献,搜索用时 11 毫秒
1.
Raman spectroscopy complimented by infrared spectroscopy has been used to study the mineral hemimorphite from different origins. The Raman spectra show consistently similar spectra with only one sample showing additional bands due to the presence of smithsonite. Raman bands observed at 3510–3565 and 3436–3455 cm−1 are assigned to OH stretching vibrations. Using a Libowitzky type formula, these OH bands provide hydrogen bond distances of 0.2910, 0.2825, 0.2762 and 0.2716 pm. Water bending modes are observed in the Raman spectrum at 1633 cm−1. An intense Raman band at 930 cm−1 is attributed to SiO symmetric stretching vibration of the Si2O7 units. Raman bands observed at 451 and 400 cm−1are attributed to out-of-plane bending vibrations of the Si2O7 units. Raman bands at 330, 280, 168 and 132 cm−1 are assigned to ZnO and OZnO vibrations. 相似文献
2.
A series of selected pyromorphite minerals Pb5(PO4)3Cl from different Australian localities has been studied by Raman spectroscopy complemented with selected infrared spectroscopy. The Raman spectrum of unsubstituted pyromorphite shows a single band at around 920 cm−1 but for the natural minerals two bands at 919 and ∼932 cm−1 attributed to the ν1 (PO4)3− stretching vibration. The observation of multiple bands is attributed to the non-equivalence of phosphate units in the pyromorphite structure and the reduction in symmetry of the (PO4)3− units. This symmetry reduction is confirmed by the observation of multiple bands in both the ν4 bending region (500–595 cm−1) and the ν2 bending region (350–500 cm−1). The presence of isomorphic substitution of (PO4)3− by (AsO4)3− units is identified by the ν1 symmetric stretching bands at around 824 and 851 cm−1 and the ν2 bending region around 331 and 354 cm−1. Contrary to expectation Raman bands in the 3320–3700 cm−1 region are observed and assigned to OH stretching bands of OH units resulting from the substitution of chloride anions in the pyromorphite structure. This study brings in to question the actual formula of natural pyromorphite as it is better represented as Pb5(PO4,AsO4)3(Cl,OH) · xH2O. 相似文献
3.
A.P.A. Moraes R. Romano A.G. Souza Filho P.T.C. Freire J. Mendes Filho O.L. Alves 《Vibrational Spectroscopy》2006,40(2):209-212
We have measured Raman and infrared spectra of α-Ge(HPO4)2·H2O compound at room temperature. The analysis of vibrational modes indicated the presence of two non-equivalent HPO42− units in agreement with 31P nuclear magnetic resonance measurements. A tentative assignment of all the observed modes is proposed based on the previous works reported for other hydrogenphosphate-based compounds. 相似文献
4.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed. 相似文献
5.
Silmarilly Bahfenne Ray L. Frost 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2009,74(1):100-103
Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the antimonate mineral bindheimite Pb2Sb2O6(O,OH). The mineral is characterised by an intense Raman band at 656 cm−1 assigned to SbO stretching vibrations. Other lower intensity bands at 664, 749 and 814 cm−1 are also assigned to stretching vibrations. This observation suggests the non-equivalence of SbO units in the structure. Low intensity Raman bands at 293, 312 and 328 cm−1 are assigned to the OSbO bending vibrations. Infrared bands at 979, 1008, 1037 and 1058 cm−1 may be assigned to δOH deformation modes of SbOH units. Infrared bands at 1603 and 1640 cm−1 are assigned to water bending vibrations, suggesting that water is involved in the bindheimite structure. Broad infrared bands centred upon 3250 cm−1 supports this concept. Thus the true formula of bindheimite is questioned and probably should be written as Pb2Sb2O6(O,OH,H2O). 相似文献
6.
Polarized absorption spectra of Ba(MnO4)2·3H2O/Ba(ClO4)2·3H2O mixed single crystals are reported at 4.2°K. Previous 1T2 → 1A1 assignments for the 5200 Å and 3000 Å absorption bands of MnO4− are substantiated; further support is provided for the 1T1 → 1A1 assignment of the 3600 Å absorption band of MnO4−. The site-splitting of the 5200 Å 1T2 state is E(1E)−E(1A) ≈ −150 cm−1; that of the 3000 Å 1T2 state is E(1E)−E(1A) ≈ 300 cm−1. A significant e vibronic intensity component is observed in the 5200 Å 1T2 state. 相似文献
7.
Rare-earth ammonium sulfate octahydrates of R2(SO4)3·(NH4)2SO4·8H2O (R=Pr, Nd, Sm, and Eu) were synthesized by a wet process, and the stable temperature region for the anhydrous R2(SO4)3·(NH4)2SO4 form was clarified by thermogravimetry/differential thermal analysis, infrared, Raman, and electrical conductivity measurements. Detailed characterization of these double salts demonstrated that the thermal stability of anhydrous R2(SO4)3·(NH4)2SO4 is different between the Pr, Nd salts and the Sm, Eu salts, and the thermal decomposition behavior of these salts was quite different from the previous reports. 相似文献
8.
Under mild hydrothermal conditions UO2(NO3)2·6H2O, Hg2(NO3)2·2H2O, and Na2HAsO4·7H2O react to form [Hg5O2(OH)4][(UO2)2(AsO4)2] (HgUAs-1). Single crystal X-ray diffraction experiments reveal that HgUAs-1 possesses a pseudo-layered structure consisting of two types of layers: and . The layers are complex, and contain three crystallographically unique Hg centers. The coordination environments and bond-valence sum calculations indicate that the Hg centers are divalent. The layers belong to the Johannite topological family. The and layers are linked to each other through μ2-O bridges that include Hg?O=U=O interactions. 相似文献
9.
The preparation and characterization of iron mercury thiocyanate, FeHg(SCN)4 (abbreviated as FMTC) are described. The spectroscopic properties were characterized by X-ray powder diffraction (XRPD), infrared, Raman and UV-Vis-NIR transmission spectra. The thermal stability and thermal decomposition of FMTC were investigated by means of thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The intermediates and final products of the thermal decomposition were identified by X-ray powder diffraction at room temperature. 相似文献
10.
The thermal decomposition of syngenite, K2Ca(SO4)2·H2O, formed during the treatment of liquid manure has been studied by thermal gravimetric analysis, differential scanning calorimetry, high temperature X-ray diffraction (XRD) and infrared emission spectroscopy (IES). Gypsum was found as a minor impurity resulting in a minor weight loss due to dehydration around 100 °C. The main endothermic dehydration and decomposition stage of syngenite to crystalline K2Ca2(SO4)3 and amorphous K2SO4 is observed around 200 °C. The reaction involves a solid-state re-crystallisation, while water and the K2SO4 diffuse out of the existing lattice. The additional weight loss steps around 250 and 350 °C are probably due to presence of larger syngenite particles, which exhibit slower decomposition due to the slower diffusion of water and K2SO4 out of the crystal lattice. A minor endothermic sulphate loss around 450 °C is not due to the decomposition of syngenite or its products or of the gypsum impurity. The origin of this sulphate is not clear. 相似文献
11.
The infrared spectra of isotopically dilute (matrix-isolated HDO molecules) isostructural compounds M(HCOO)2·2H2O (M=Mn,Fe,Co,Ni,Zn,Cu) are presented and discussed in the region of the OD stretching modes. According to the structural data the compounds under study are divided into two groups: in M(HCOO)2·2H2O (M=Mn,Ni,Zn) the H2O(1) molecules form stronger hydrogen bonds as compared to H2O(2); in M(HCOO)2·2H2O (M=Fe,Co,Cu) the H2O(2) molecules form stronger hydrogen bonds as compared to the H2O(1) molecules. The influence of the metal–water interactions (synergetic effect) and the unit-cell volumes (repulsion potential of the lattice) on the hydrogen bond strength within the isostructural series is discussed. The wavenumbers of the uncoupled OD stretching modes of the HDO molecules influenced by guest ions (Cu2+ ions matrix-isolated in M(HCOO)2·2H2O and M2+ ions matrix-isolated in Cu(HCOO)2·2H2O) are presented and commented. For example, the analysis of the spectra reveals that when Cu2+ ions are included in the structure of M(HCOO)2·2H2O the hydrogen bonds of the type M–OH2OCHO–Cu are considerably weaker as compared to those of the same type formed when M2+ ions are included in the structure of Cu(HCOO)2·2H2O if the cations remain unchanged. 相似文献
12.
Differential scanning calorimetry of [Rb0.44(NH4)0.56]2HgCl4 · H2O material showed three anomalies at 340, 355 and 424 K, respectively. The room temperature phase has space group Pcma (a=8.433(1) Å, b=9.1817(9) Å and c=11.954(1)). Phase II (T=350 K) is disordered and exhibits orthorhombic symmetry (a=8.456(13), b=9.202(9) and c=12.011(10) Å). Hydrogen bonding, the nature and the degree of structure (dis)order and the mechanisms of the transitions are discussed. The dielectric constant ′ at different frequencies and temperature revealed a phase transition at T=340 K related to NH4+ reorientation and H+ diffusion, and a characteristic increase above 355 K, which might be due to loss of water of crystallization. Transport properties in this compound appear to be due to an Rb+/NH4+ and H+ ions hopping mechanism. 相似文献
13.
Paul M. Forster Andrea R. Burbank Melanie C. O'Sullivan Nathalie Guillou Carine Livage Grard Frey Norbert Stock Anthony K. Cheetham 《Solid State Sciences》2005,7(12):1549
A new form of cobalt succinate has been discovered using high-throughput methods and its structure was solved by single crystal X-ray diffraction. Co7(C4H4O4)4(OH)6(H2O)37H2O crystallizes in the monoclinic space group P21/c with cell parameters: a=7.888(2) Å, b=19.082(6) Å, c=23.630(7) Å, β=91.700(5)°, V=3555(2) Å3, R1=0.0469. This complex structure, containing 55 crystallographically distinct non-hydrogen atoms, is compared to the previously reported nickel phase, characterized using ab initio structure solution from synchrotron powder diffraction data. 相似文献
14.
L. Schriver-Mazzuoli J. M. Coanga A. Schriver P. Ehrenfreund 《Vibrational Spectroscopy》2002,30(2):245-257
Fourier transform infrared reflection spectroscopy (incidence angle of 5°) was used to characterize thin films of dimethyl ether (DME) and of mixtures containing water and DME between 10 and 160 K under a pressure of 10−7 mbar. Solid DME has two solid phases: an amorphous phase which is obtained below 65 K and a crystalline phase >65 K. From 90 K, DME begins to sublimate with surface binding energy of 20±2 kJ mol−1. Vibrational spectrum of DME trapped in water ice remains nearly unchanged from 30 to 120 K. Between 120 and 130 K, a large part of DME is released and strong changes in the frequencies and the profile of the absorptions of DME are observed. This behavior suggests the formation of clathrate hydrate. Below 120 K, the trapped DME is hydrogen-bonded to water molecules. 相似文献
15.
Xu-Da Wang Mao Liang Li-Cun Li Zong-Hui Jiang Dai-Zheng Liao Shi-Ping Yan Peng Cheng 《Structural chemistry》2007,18(1):5-8
A novel malonate-bridged copper (II) compound of formula {[Cu4(4,4′-bpy)8(mal)2(H2O)4](ClO4)2(H2O)4(CH3OH)2}n (4,4′-bpy = 4,4′-bipyridine; mal = malonate dianion) has been prepared and structurally characterized by X-ray crystallography.
This compound exhibits a novel three-dimensional network being composed of Cu-4,4′-bipyridine layers which are pillared by
malonate bridge ligands. The copper(II) ions has two different coordination environment. 相似文献
16.
W. Ryba-Romanowski S. Go
b G. Dominiak-Dzik W. A. Pisarski D. Podsiada Z. Czapla 《Journal of Molecular Structure》1998,450(1-3):219-222
Chromium doped (CH3)2NH2Al(SO4)2·6H2O (DMAAlS) and (CH3)2NH2Ga(SO4)2·6H2O (DMAGaS) single crystals were grown and investigated using the methods of optical spectroscopy. It was found that the Cr3+ ions in the two crystals are situated in a strong crystal field in which the 2E state is the lowest. The single narrow R-line associated with the 2E–4A2 phosphorescence of Cr3+ in DMAAlS in a ferroelectric phase indicates an undistorted octahedral site, whereas important distortion of Oh symmetry and structural disorder was inferred from spectral data obtained with DMAGaS:Cr3+ in a low temperature phase. Results of optical investigation are discussed taking into account the structural data. 相似文献
17.
M.Tahir Güllüo?lu?enay Yurdakul 《Journal of Molecular Structure》2002,641(1):93-100
New Hofmann-type complexes and clathrates of the forms M(piperidine)2Ni(CN)4 and M(piperidine)2Ni(CN)4·1.5G (M=Cd, Co, Ni or Cu; G=benzene) were prepared in powder form and their infrared and Raman spectra are reported. The spectral features suggest that these compounds are similar in structure to the Hofmann-type clathrates except for the copper compounds. The complex and clathrate of Cu have different spectral features in comparison with its analogues due to the Jahn-Teller effect. 相似文献
18.
De-Gang Ding Hui-Jie Lu Yao-Ting Fan Hong-Wei Hou 《Journal of solid state chemistry》2006,179(3):747-752
A novel copper organodiphosphonate complex containing a second ligand 4,4′-bipyridine (4,4′-bpy) based on 1-aminoethylidenediphosphonic acid (H4aedp), Cu4(aedp)2(4,4′-bpy)(H2O)4 (1), has been synthesized under hydrothermal conditions. Complex 1 adopts a three-dimensional framework structure assembled from {Cu4(aedp)2(H2O)4} layers and 4,4′-bpy bridges. Each {Cu4(aedp)2(H2O)4} unit consists of three crystallographically distinct Cu atoms. The Cu(1) atom has a distorted square pyramidal geometry, whereas the Cu(2) and Cu(3) atoms have a distorted elongated tetragonal octahedral geometry. The magnetic studies indicate that complex 1 show typical antiferromagnetic behaviors at low temperature, which is attributed to the superexchange couplings between Cu(II) centers through μ-O bridge in the phosphonate layers. Crystal data for 1: triclinic, space group , a=8.0931(16), b=13.567(3), c=6.2185(12)Å, α=90.55(3), β=96.97(3), γ=78.50(3)°, V=664.1(2)Å3, Z=2. 相似文献
19.
S. -Z. Zhan G. -W. Wang P. -J. Zheng C. -J. Hu Q. -J. Meng C. W. Yuan 《Journal of Molecular Structure》1999,510(1-3):7-12
A novel complex containing a (μ-bicarbonato)-bis(μ-hydroxo)dicobalt(II) cation and a (μ-cyano)dichromium(III) anion has been obtained and characterized by single crystal X-ray diffraction. The cations have a confacial bioctahedral structure and the anion contains an octahedral Cr(CN)63− unit bridging to the second Cr which has trigomal planar geometry. 相似文献
20.
采用配位沉淀法制备出了Ni(OH)2样品,经XRD测试为β-Ni(OH)2,TEM测试结果表明其为平均粒径50nm左右的不规则的颗粒。将所制备的纳米Ni(OH)2按8wt%的比例在球镍中混合后制成电极,可使正极的比容量提高11%左右。热分析表明,纳米Ni(OH)2的电化学活性高于球镍的电化学活性。激光拉曼光谱的测试结果说明了8wt%混合后制成的纳米电极确实有较好的放电容量,同时也证实了用拉曼光谱可以表征电极材料的充放电 相似文献