首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The investigation on fabrication of Fe3O4-chitosan-pectinase nanobiocatalyst was performed by covalently binding the pectinase onto carboxyl group activated chitosan-coated magnetic nanoparticles (CMNPs). The morphological and size distribution analysis of the different magnetic nanoparticles (MNPs) was done using transmission electron microscopy (TEM), and the average diameter was 11.07?±?3.04, 11.55?±?3.16, and 11.59?±?3.16 nm for MNPs, CMNPs, and fabricated nanobiocatalyst, respectively, suggesting that there was no significant change in the size of MNPs after coating and binding. The characteristic peaks occurred at 2θ of 30.39, 35.43, 43.37, 57.22, and 62.9, and their corresponding indices 220, 311, 400, 520, and 441 for different MNPs from the X-ray diffraction (XRD) studies confirmed the presence of Fe3O4 with the spinel structure, and there was no phase change even after coating and binding. The various required characteristic absorption peaks (575, 585, 1,563, 1,614, 1,651, and 1,653 cm?1) from Fourier transform infrared (FT-IR) spectroscopy confirmed the surface modifications and binding of pectinase onto the MNPs. At the weight ratio of about 19.8?×?10?3 mg bound pectinase/mg activated CMNPs, the activity of fabricated nanobiocatalyst was found to be maximum. In order to monitor their improved activity, the pH, temperature, reusability, storage ability, and kinetic studies were established.  相似文献   

2.
In the present study, application of Fe3O4 magnetic nanoparticles (MNPs) coated with diethyldithiocarbamate as a solid-phase sorbent for extraction of trace amounts of cadmium (Cd2+) and nickel (Ni2+) ions by the aid of ultrasound was investigated. The analytes were determined by inductively coupled plasma-optical emission spectroscopy. Fe3O4 MNPs were prepared by solvothermal method and characterized with dynamic light scattering, scanning electron microscope and X-ray diffraction. Response surface methodology was used for optimization of the extraction process and modeling the data. The optimal conditions obtained were as follows: chelating agent, 1.2 g L?1; pH, 6.13; sonication time, 13 min and Fe3O4 MNPs, 10.3 mg. The calibration curves were linear over the concentration range of 1–1,000 μg L?1 for Cd2+ and 2.5–1,000 for Ni2+ with the determination coefficients (R 2) of 0.9997 and 0.9995, respectively. The limits of detection were 0.27 μg L?1 for Cd2+ and 0.76 μg L?1 for Ni2+. The relative standard deviations (n = 7, C = 200 μg L?1) for determination of Cd2+ and Ni2+ were 2.0 and 2.7 %, respectively. The relative recoveries of the analytes from tap, river and lagoon waters and rice samples at the spiking level of 10 μg L?1 were obtained in the range of 95–105 %.  相似文献   

3.
Novel magnetic polyurethane flexible foam nanocomposites were synthesized by incorporation of aminopropyltriethoxysilane (APTS) functionalized magnetite nanoparticles (MNPs) via one-shot method. The functionalized MNPs (Fe3O4@APTS) were synthesized by co-precipitation of the Fe2+ and Fe3+ with NH4OH and further functionalization with APTS onto the surface of MNPs by sol–gel method. The magnetic core-shell NPs were used up to 3.0 % in the foam formulation and the magnetic nanocomposites prepared successfully. The results of thermogravimetric analysis (TGA) showed an increasing in thermal stability of polyurethane nanocomposite foam at initial, 5 and 10 %, and maximum thermal decomposition temperatures by incorporation of Fe3O4@APTS. In addition SEM images revealed the uniformity of the foam structures and decreasing in pore sizes. Furthermore, VSM result showed super paramagnetic behavior for Fe3O4@APTS-PU nanocomposites.  相似文献   

4.
The article describes the synthesis of core-shell magnetic nanoparticles (MNPs) of the type Fe3O4@MIL-100 (MIL standing for Material Institut Lavoisier), and their application as sorbent for magnetic solid-phase extraction (MSPE) of triclosan. The MNPs were prepared via circular self-assembly of ferric chloride and benzenetricarboxylic acid. The functionalized MNPs were characterized by transmission electron microscopy, FTIR and thermogravimetry. Following extraction, triclosan was eluted with ammoniacal methanol and then submitted to HPLC with UV detection. The amount of magnetic microspheres, sample pH and ionic strength, adsorption time, desorption time, desorption solvent and the volume of the eluent were optimized. Under optimum conditions, the method showed good linearity in the 0.1 to 50 mg·kg?1 triclosan concentration range in toothpaste samples. Other features include (a) intra-day and inter-day relative standard deviations (RSD, for n = 4) of <5.5 %, (b) a 30 μg·kg?1 limit of detection, and (c) extraction recoveries between 90.86 % and 101.1 %. The method was successfully applied to the determination of triclosan in children’s toothpaste.
Graphical abstract The article describes the synthesis of core-shell magnetic nanoparticles (MNPs) of the type Fe3O4@MIL-100, and their application as sorbent for magnetic solid-phase extraction (MSPE) of triclosan.
  相似文献   

5.
The use of bronate affinity adsorbents is a new separation method that appeared recently with great potential for specific extraction of cis‐diol‐containing compounds. In this work,a new strategy for the facile construction of boronic acid‐functionalized Fe3O4 magnetic nanoparticles (Fe3O4@FPBA MNPs) with a high capacity was described. The extraction capacity of the Fe3O4@FPBA MNPs was determined to be 66.0 ± 2.7 µmol/g for catechol and 80.6 ± 2.0 µmol/g for dopamine, being higher than that for the reported methods. The Fe3O4@FPBA MNPs were used to extract four cis‐diol drugs: caffeic acid isopropyl ester, caffic acid bornyl ester, isopropyl 3‐(3,4‐dihydroxyphenyl)‐2‐hydroxypropanoate and 3‐(3, 4‐dihydroxyphenyl)‐2‐hydroxylpropionic acid – from the spiked rabbit plasma, and the recoveries of four drugs were between 87.29 and104.37% with relative standard deviations ranging from 1.34 to 8.81%. Under the most favorable conditions, the solid‐phase extraction combined with HPLC‐UV for the analysis of four drugs in plasma could eliminate interferences from endogenous components of the biological fluids and exhibited sufficient precision and accuracy. These results showed that the prepared Fe3O4@FPBA MNPs were qualified for efficiently enriching and determining the trace cis‐diol substances from biological samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Magnetic solid-phase extraction based on Fe3O4/graphene oxide nanocomposites was investigated for the separation, preconcentration and determination of imatinib and doxorubicin in aqueous solutions. Synthesis of Fe3O4/graphene oxide was characterized by transmission electron microscopy, energy-dispersive X-ray analyzer and vibrating sample magnetometer. After optimizing the conditions, optimal experimental conditions including sample pH, the amount of the magnetic nanoparticles, the effect of salt concentration and other chemotherapy medications, eluent type and extraction time were studied and established. The method showed good linearity for the determination of doxorubicin and imatinib in the concentration range of 0.01–100 μg mL?1 in aqueous solutions with limit of detection 1.8 ng mL?1 for doxorubicin and 1.9 ng mL?1 for imatinib. The relative recoveries of doxorubicin and imatinib levels were 96.7 and 88.4%, respectively. The results indicate that the present procedure is a suitable method for extraction of imatinib and doxorubicin from environmental water samples.  相似文献   

7.
Fe3O4 nanoparticles were deposited on sheets of graphene oxide (GO) by a precipitation method, and glucose oxidase (GOx) was then immobilized on this material to produce a GOx/Fe3O4/GO magnetic nanocomposite containing crosslinked enzyme clusters. The 3-component composite functions as a binary enzyme that was employed in a photometric method for the determination of glucose and hydrogen peroxide where the GOx/Fe3O4/GO nanoparticles cause the generation of H2O2 which, in turn, oxidize the substrate N,N-diethyl-p-phenylenediamine to form a purple product with an absorption maximum at 550 nm. The absorbance at 550 nm can be correlated to the concentration of glucose and/or hydrogen peroxide. Under optimized conditions, the calibration plot is linear in the 0.5 to 600 μM glucose concentration range, and the detection limit is 0.2 μM. The respective plot for H2O2 ranges from 0.1 to 10 μM, and the detection limit is 0.04 μM. The method was successfully applied to the determination of glucose in human serum samples. The GOx/Fe3O4/GO nanoparticles are reusable.
Figure
A one-step spectrophotometric method for the detection of glucose and/or H2O2 was developed by using GOx immobilized Fe3O4/GO MNPs as a bienzyme system and DPD as a substrate.  相似文献   

8.
The proposed study examined the preparation of chitosan (CS)–polyvinylpyrrolidone (PVP)–bovine serum albumin (BSA)-coated magnetic iron oxide (Fe3O4) nanoparticles (Fe3O4–CS–PVP–BSA) to use as potential drug delivery carriers for delivery of tamoxifen drug (TAM) . The anticancer drug selected in this study was tamoxifen which can be used for the human breast cancer treatment. These prepared nanoparticles were characterized by FTIR, XRD, SEM, AFM, TEM, CD and VSM techniques. The swelling studies have been measured at different (10, 20, 30, 40, 50%) drug loading. The mean particle size of the tamoxifen-loaded nanoparticles system (Fe3O4–CS–TAM, Fe3O4–CS–TAM–PVP and Fe3O4–CS–TAM–PVP–BSA) as measured by Malvern Zetasizer ranged between 350 ± 2.3 and 601 ± 1.7 nm. As well as these drug-loaded nanoparticles were positively charged. The zeta potential was in the range of 28.9 ± 3.5 and 50.8 ± 3.9 mV. The encapsulation efficiency was between 63.60 ± 2.11 and 96.45 ± 2.12%. Furthermore, in vitro release and drug loading efficiency from the nanoparticles were investigated. The cytotoxicity of prepared nanoparticles was verified by MTT assay. In vitro release studies were executed in 4.0 and 7.4 pH media to simulate the intestinal and gastric conditions and different temperature (37 and 42 °C). Hence, the prepared tamoxifen-loaded nanoparticles system (Fe3O4–CS–TAM, Fe3O4–CS–TAM–PVP and Fe3O4–CS–TAM–PVP–BSA) could be a promising candidate in cancer therapy.  相似文献   

9.
In this study, the potential of MOF (Mil-101-Cr)-coated Fe3O4 magnetic nanoparticles (Fe3O4-MOF MNPs) for asphaltene adsorption was investigated for the first time and the results were compared with magnetic Fe3O4 nanoparticles (Fe3O4 MNPs). The coprecipitation method was used for the synthesis of both nanoparticles and were verified using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM). The initial asphaltene concentration, nanoparticles concentration, and temperature were the investigated parameters that influenced the adsorption capacity. Increasing the asphaltene concentration, decreasing the mass of nanoparticles, and reducing the temperature could enhance the maximum asphaltene adsorption capacities of 0.79 for Fe3O4 MNPs and 0.98?mg?m?2 for Fe3O4-MOF MNPs. Adsorption isotherms tests showed that the Langmuir model was in agreement with the experimental data. In addition, the evaluation of adsorption kinetics demonstrated that the pseudo-second-order Lagergren model predicted the results more precisely. The amount of asphaltene adsorption for Fe3O4-MOF MNPs was higher than that for Fe3O4 MNPs. These results recommend the application of MOF as an appropriate and effective coating for enhancing asphaltene adsorption.  相似文献   

10.
Magnetic nanoparticles (MNPs) functionalized with methotrexate (MTX)-conjugated bovine serum albumin (BSA) as a biocompatible drug delivery vehicle were synthesized using a facile method. Characterization of the functionalized MNPs (Fe3O4@BSA-MTX NPs) was performed using various techniques including UV–visible spectroscopy, dynamic light scattering, vibrating sample magnetometry and X-ray diffraction. The particle size and zeta potential of Fe3O4@BSA-MTX NPs were 105.7 ± 3.81 nm (mean ± SD) and −18.2 mV, respectively. MTX release from Fe3O4@BSA-MTX NPs showed an enzyme-dependent release pattern. Hemo-biocompatibility of Fe3O4@BSA-MTX NPs was confirmed using hemolysis test. In addition, the cytotoxicity of functionalized MNPs and free MTX against MCF-7 cell line was investigated using MTT assay. The results of experiments revealed that the Fe3O4@BSA-MTX NPs as a biocompatible carrier could improve the therapeutic effect of MTX.  相似文献   

11.
Ionic liquid-modified magnetic polymeric microspheres (ILMPM) were prepared based on Fe3O4 magnetic nanoparticles (MNPs) and ionic liquids (ILs) incorporated into a polymer. The composites were characterized using scanning electron microscopy, Fourier transform infrared analysis, thermogravimetric analysis, X-ray diffraction, and vibrating magnetometer, which indicated that ILMPM had a regularly spherical shape and strong magnetic property. The obtained ILMPM were successfully applied as a special adsorbent of magnetic dispersive solid phase extraction (MDSPE) for the rapid extraction and isolation of sulfamonomethoxine sodium and sulfachloropyrazine sodium in urine. The factors that affected extraction efficiency, such as adsorption conditions, desorption conditions, washing and elution solvents, and pH of the sample solution, were optimized. Under the optimum condition, good linearity in the range of 0.005–2.0 μg g?1 (r?≥?0.9996) was obtained for the two sulfonamides (SAs); the average recoveries at three spiked levels ranged from 86.9 to 102.1 %, with relative standard deviations of ≤4.3 %. The presented ILMPM-MDSPE method combined the advantages of ILs, MNPs, and MDSPE and therefore could be potentially applied for rapid screening of SAs in urine.  相似文献   

12.
In this research, magnetic Fe3O4 nanoparticles were synthesised by co-precipitation method and modified with polythiophene (PT) to produce Fe3O4-PT nanoparticles for preconcentration and determination of cadmium (??) ion followed by electrothermal atomic absorption spectrometry. The results of FT-IR spectroscopy, EDX analysis and SEM images show that Fe3O4-PT nanoparticles were synthesised successfully. Different parameters such as sample pH, amounts of adsorbent, sample volume, extraction time, type and concentration of eluent and desorption time were completely investigated and optimum conditions were selected.

Under the optimum conditions, the calibration curve was linear in the range of 0.01–0.25 µg L?1 of cadmium (??). The relative standard deviation was 4.7% (n = 7, 0.10 µg L?1 Cd2+) and limit of detection was 3.30 ng L?1. The accuracy of the proposed method was verified by the analysis of a certified reference material and spike method. Finally, the proposed method was applied for the determination of ultra-trace levels of cadmium (??) in different water and food samples.  相似文献   

13.
《先进技术聚合物》2018,29(7):1988-2001
The present study reports synthesis and characterization of a new acrylamide‐based monomer containing rhodanine moiety, N‐3‐amino‐thiazolidine‐4‐one‐acrylamide (ATA). Poly(ATA)‐grafted magnetite nanoparticles (poly(ATA)‐g‐MNPs) were prepared using surface‐initiated atom transfer radical polymerization of the monomer on Fe3O4 nanoparticles. The grafted nanoparticles were characterized by Fourier transform infrared analysis, scanning electron microscopy, X‐ray diffraction, and vibrating sample magnetometry. The amount of the grafted polymer was 209 mg g−1, as calculated from thermogravimetric analysis experiment. The capability of poly(ATA)‐g‐MNPs to remove Co(II) cations was shown under optimal conditions of contact time, pH, adsorbent dosage, and initial Co(II) concentration. About 86% of the Co(II) cations were removed over 7 minutes. The adsorption kinetics obeyed the pseudo–second‐order kinetic equation, and the Langmuir isotherm model best described the adsorption isotherm with a maximum adsorption capacity of 3.62 mg g−1. The thermodynamic investigation showed spontaneous nature of the adsorption process (ΔG = −2.90 kJ mol−1 at 25°C ± 1°C). In addition, the poly(ATA)‐g‐MNPs were regenerated by simply washing with an aqueous 0.1M HCl solution. The study of the reusability of the prepared magnetic sorbent revealed that the sorbent can be reused without a significant decrease in the extraction efficiency and be recovered by 95.4% after 7 cycles. These findings suggest that the grafted nanoparticles are stable and reusable adsorbent and can be potentially applied to water treatment in efficient removal of Co(II) cations.  相似文献   

14.
The sulfhydryl-functionalised core-shell Fe3O4@SiO2 magnetic nanoparticles (Fe3O4@SiO2–RSH MNPs)-based dispersive solid-phase extraction method was developed. The goal of this method is the extraction of mercury species from natural water samples. An interesting aspect of the method is that, thanks to the spontaneously aggregate, the MNPs with a sub-30-nm-size range could be fast and efficiently extracted by 0.45 μm pore size mixed cellulose esters membrane filter. Thus, the elution step can be conducted by passing small amounts eluent through the MNPs on the membrane. It is also found that addition of Ag+ to water sample could improve the elution efficiency, and furthermore, minimises the matrix effects during the extraction of mercury species from natural water samples. The feasibility of the method was studied, and extraction efficiency was evaluated. The results showed that, calculated at 5 ng/L spiked concentration levels, absolute recoveries were 89.4%, 91.9% and 64.2%, and enrichment factors (EFs) were 596, 613 and 428, for inorganic mercury, methylmercury and ethylmercury, respectively. The high EFs were achieved in 5 min of overall extraction time. The method was applied to groundwater and river water samples. The results showed that its suitability for use in fast extracting trace levels of mercury species from natural water samples.  相似文献   

15.
Despite the rapid development of nanomaterials and nanotechnology, it is still desirable to develop novel nanoparticle-based techniques which are cost-effective, timesaving, and environment-friendly, and with ease of operation and procedural simplicity, for assay of target analytes. In the work discussed in this paper, the dye fluorescein isothiocyanate (FITC) was conjugated to 1,6-hexanediamine (HDA)-capped iron oxide magnetic nanoparticles (FITC–HDA Fe3O4 MNPs), and the product was characterized. HDA ligands on the surface of Fe3O4 MNPs can bind 2,4,6-trinitrotoluene (TNT) to form TNT anions by acid–base pairing interaction. Formation of TNT anions, and captured TNT substantially affect the emission of FITC on the surface of the Fe3O4 MNPs, resulting in quenching of the fluorescence at 519 nm. A novel FITC–HDA Fe3O4 MNPs-based probe featuring chemosensing and magnetic separation has therefore been constructed. i.e. FITC–HDA Fe3O4 MNPs had a highly selective fluorescence response and enabled magnetic separation of TNT from other nitroaromatic compounds by quenching of the emission of FITC and capture of TNT in aqueous solution. Very good linearity was observed for TNT concentrations in the range 0.05–1.5 μmol?L?1, with a detection limit of 37.2 nmol?L?1 and RSD of 4.7 % (n?=?7). Approximately 12 % of the total amount of TNT was captured. The proposed methods are well-suited to trace detection and capture of TNT in aqueous solution.
Figure
Iron oxide magnetic nanoparticles-based selective fluorescent response and magnetic separation probe for 2,4,6-trinitrotoluene  相似文献   

16.
Fe3O4-SiO2-C18 paramagnetic nanoparticles have been synthesised and used as magnetic solid-phase extraction (MSPE) sorbent for the extraction of Zineb from agricultural aqueous samples under ultrasonic condition and quantified through a first-derivative spectrophotometric method. The produced magnetic nanoparticles were characterised by using scanning electron microscopy, X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy and zeta potential reader. The Fe3O4-SiO2-C18 paramagnetic nanoparticles had spherical structures with diameters in the range of 198–201 nm. Further, MSPE was performed by dispersion of Fe3O4-SiO2-C18 paramagnetic nanoparticles in a buffered aqueous solution accompanied by sonication. Next, the sorbents were accumulated by applying an external magnetic field and were washed with 4-(2-pyridylazo) resorcinol-dimethyl sulfoxide solution, for the purpose of desorbing the analyte. The extraction conditions (sample pH, washing and elution solutions, amount of sorbents, time of extraction, sample volume and effect of diverse ions), as well as Zineb-PAR first-order derivative spectra, were also evaluated. The calibration curve of the method was linear in the concentration range of 0.055–24.3 mg L?1 with a correlation coefficient of 0.991. The limit of detection and limit of quantification values were 0.022 and 0.055 mg L?1, respectively. The precision of the method for 0.27 mg L?1 solution of the analyte was found to be less than 3.2%. The recoveries of three different concentrations (0.27, 1.37 and 13.7 mg L?1) obtained 98.3%, 98.5% and 96.0%, respectively. The proposed Fe3O4-SiO2-C18 paramagnetic nanoparticles were found to have the capability of reusing for 7.0 times.  相似文献   

17.
The objective of the present study was to investigate the potential use of applying polythiophene coating on magnetic Fe3O4 nanoparticles for the enhancement of asphaltene adsorption. Two stages of experimental were conducted. In the first stage, the ability of coated nanoparticles for asphaltene adsorption in synthetic asphaltene-toluene solution was evaluated. The effects of parameters such as nanoparticles concentration, initial concentration of asphaltene, and temperature were studied. In the second stage, the performance of the coated nanoparticles for the adsorption of asphaltene from crude oil was investigated under atmospheric pressure and a pressure-volume-temperature (PVT) apparatus was utilized for simulated reservoir conditions. Fe3O4 and Fe3O4-PT MNPs were synthesized using an effective co-precipitation method. The results of the first-stage tests indicated that the maximum adsorption capacity values for Fe3O4 and Fe3O4-PT MNPs were 0.79 and 1.09?mg?m?2, respectively. The optimum value of nanoparticles concentration was approximately determined as 10?g?L?1. According to the adsorption isotherms and kinetics, the Langmuir and pseudo-second-order Lagergren models were consistent with the experimental data, respectively. The average adsorption efficiencies for Fe3O4-PT and Fe3O4 MNPs were 78.98 and 65.94%, respectively. The results of the performed experiments on crude oil showed that Fe3O4-PT MNPs could adsorb asphaltenes from crude oil in a similar trend as synthetic asphaltene-toluene solution.  相似文献   

18.
Cui YR  Hong C  Zhou YL  Li Y  Gao XM  Zhang XX 《Talanta》2011,85(3):1246-1252
Orientedly bioconjugated core/shell Fe3O4@Au magnetic nanoparticles were synthesized for cell separation. The Fe3O4@Au magnetic nanoparticles were synthesized by reducing HAuCl4 on the surfaces of Fe3O4 nanoparticles, which were further characterized in detail by TEM, XRD and UV-vis spectra. Anti-CD3 monoclonal antibody was orientedly bioconjugated to the surface of Fe3O4@Au nanoparticles through affinity binding between the Fc portion of the antibody and protein A that covalently immobilized on the nanoparticles. The oriented immobilization method was performed to compare its efficiency for cell separation with the non-oriented one, in which the antibody was directly immobilized onto the carboxylated nanoparticle surface. Results showed that the orientedly bioconjugated Fe3O4@Au MNPs successfully pulled down CD3+ T cells from the whole splenocytes with high efficiency of up to 98.4%, showing a more effective cell-capture nanostructure than that obtained by non-oriented strategy. This developed strategy for the synthesis and oriented bioconjugation of Fe3O4@Au MNPs provides an efficient tool for cell separation, and may be further applied to various fields of bioanalytical chemistry for diagnosis, affinity extraction and biosensor.  相似文献   

19.
Chenyu Li  Ligang Chen  Wei Li 《Mikrochimica acta》2013,180(11-12):1109-1116
We report on a method for the extraction of organophosphorus pesticides (OPPs) from water samples using mixed hemimicelles and magnetic titanium dioxide nanoparticles (Fe3O4@TiO2) modified by cetyltrimethylammonium. Fe3O4@TiO2 nanoparticles were synthesized by a hydrothermal process and then characterized by scanning electron microscopy and Fourier transform IR spectrometry. The effects of the quantity of surfactant, extraction time, desorption solvent, pH value, extraction volume and reuse of the sorbent were optimized with respect to the extraction of OPPs including chlorpyrifos, dimethoate, and trichlorfon. The extraction method was applied to analyze OPPs in environmental water using HPLC along with UV detection. The method has a wide linear range (100–15,000 ng L?1), good linearity (r?>?0.999), and low detection limits (26–30 ng L?1). The enrichment factor is ~1,000. The recoveries (at spiked levels of 100, 1,000 and 10,000 ng L?1) are in the range of 88.5–96.7 %, and the relative standard deviations range from 2.4 % to 8.7 %.
Figure
Schematic illustration of the preparation of CTAB coated Fe3O4@TiO2 and its application as SPE sorbent for enriching OPPs  相似文献   

20.
Six magnetic spinel-type CoFe2O4 samples were prepared in the form of powder by a simple sol–gel auto-combustion method from precursor solutions with different metal concentrations (0.1–0.3 mol L?1) and pH values (<1–10). The samples were characterized by X-ray diffractometry, Fourier transform infrared spectrophotometry, transmission electron microscopy and N2-physisorption. Their catalytic performances for oxidation of cyclohexane were evaluated using oxygen as oxidant in the absence of solvents. The results show that pH values and metal concentrations of precursor solutions play important roles in the sizes, dispersions and morphologies of the CoFe2O4 nanoparticles, and thus in their catalytic performances. The sample resulted from precursor solution under the conditions of pH = 7 and metal concentration = 0.1 mol L?1 with the largest surface area, exhibited the best catalytic performance with the highest cyclohexane conversion of 13.7 % and selectivity of 93.9 % for cyclohexanol and cyclohexanone. The CoFe2O4 nanocrystal is also found an efficient catalyst for oxidation of aliphatic and aromatic alkenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号