首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Uranium concentration in groundwater reflect both redox conditions and uranium content in host rock. In the present study an attempt has been made to study the uranium concentration and activity ratios of uranium isotopes to present the geochemical conditions of the groundwater in Malwa region of Punjab state, India and the reason for high uranium levels and variation of activity ratios from secular equilibrium conditions. Uranium concentration in groundwater samples was found to be in the range of 13.9 ± 1.2 to 172.8 ± 12.3 μg/l with an average value of 72.9 μg/l which is higher than the national and international guideline values. On the basis of uranium concentration, the groundwater of the study region may be classified as oxidized aquifer on normal uranium content strata (20 %) or oxidized aquifer on enhanced uranium content strata (80 %). The 238U, 235U and 234U isotopic concentration in groundwater samples was found to be in the range of 89.2–1534.5, 4.4–68.5, and 76.4–1386.2 mBq/l, respectively. Activity ratios of 234U/238U varies from 0.94 to 1.85 with a mean value of 1.11 which is close to unity that shows secular equilibrium condition. High value of 234U isotope than 238U may be due to alpha recoil phenomenon. The plot of AR of 234U/238U against the total uranium content in log scale reveals that the groundwaters of the study region either belongs to stable accumulation or normal oxidized aquifer.  相似文献   

2.
Within this work, the activity concentrations of uranium isotopes (234U, 235U, and 238U) were analyzed in some of the popular and regularly consumed Hungarian mineral-, spring-, therapeutic waters and tap waters. Samples were selected randomly and were taken from different regions of Hungary (Balaton Upland, Bükk Mountain, Somogy Hills, Mez?föld, and Lake Hévíz). Concentration (mBq L?1) of 234U, 235U, and 238U in the waters varied from 1.1 to 685.2, from <0.3 to 7.9, and from 0.8 to 231.6 respectively. In general, the highest uranium concentrations were measured in spring waters, while the lowest were found in tap waters. In most cases radioactive disequilibrium was observed between uranium isotopes (234U and 238U). The activity ratio between 234U and 238U varies from 0.57 to 4.97. The calculated doses for the analyzed samples of spring water are in the range 0.07–32.39 μSv year?1 with an average 4.32 μSv year?1. This is well below the 100 μSv year?1 reference level of the committed effective dose recommended by WHO and the EU Council. The other naturally occurring alpha emitting radionuclides (226Ra and 210Po) will be analyzed later to complete the dose assessment. This study provides preliminary information for consumers and authorities about their internal radiological exposure risk due to annual intake of uranium isotopes via water consumption.  相似文献   

3.
The concentrations and distributions of natural radioactivity, uranium and radon in lake waters from around Van, Turkey were investigated with an aim of evaluating the environmental radioactivity. Fourteen lake waters were collected from different six lakes around Van (Turkey) to determine 238U, 222Rn and total alpha and total beta distributions in 2009. The total α and total β activities were counted by using α/β counter of the multi-detector low background system (PIC-MPC-9604) and the 238U concentrations were determined by inductively coupled plasma-mass spectrometry (Thermo Scientific Element 2) and radon concentrations were measured with the solid state nuclear track detector technique. The activity concentrations ranging from ND to 0.039 Bq L?1 and from 0.026 to 3.728 Bq L?1 for total alpha and beta, respectively, and uranium concentrations ranging from 0.083 to 3.078 μg L?1, and radon concentrations varying between 47.80 and 354.86 Bq m?3 were observed in the lake waters.  相似文献   

4.
Arsenazo III modified maghemite nanoparticles (A-MMNPs) was used for removing and preconcentration of U(VI) from aqueous samples. The effects of contact time, amount of adsorbent, pH and competitive ions was investigated. The experimental results were fitted to the Langmuir adsorption model in the studied concentration range of uranium (1.0 × 10?4–1.0 × 10?2 mol L?1). According to the results obtained by Langmuir equation, the maximum adsorption capacity for the adsorption of U(VI) on A-MMNPs was 285 mg g?1 at pH 7. The adsorbed uranium on the A-MMNPs was then desorbed by 0.5 mol L?1 NaOH solution and determined spectrophotometrically. A preconcentration factor of 400 was achieved in this method. The calibration graph was linear in the range 0.04–2.4 ng mL?1 (1.0 × 10?10–1.0 × 10?8 mol L?1) of U(VI) with a correlation coefficient of 0.997. The detection limit of the method for determination of U(VI) was 0.01 ng mL?1 and the relative standard deviation (R.S.D.) for the determination of 1.43 and 2.38 ng mL?1 of U(VI) was 3.62% and 1.17% (n = 5), respectively. The method was applied to the determination of U(VI) in water samples.  相似文献   

5.
The smear samples of the penetrator were analyzed for the determination of the uranium composition. The obtained relative composition (m/m) of uranium isotopes in all the smear samples is in the range of 99.76-99.78% for 238U, 0.000659-0.000696% for 234U, 0.213-0.234% for 235U, and 0.00274-0.00328% for 236U, showing characteristics of depleted uranium (DU). The uranium concentrations in Kosovo soil and water samples as well as biological samples were investigated. It was found that the uranium concentrations in the Kosovo soil samples are in the range of 11.3-2.26·105 Bq·kg-1 for 238U, 10.3-3.01·104 Bq·kg-1 for 234U, 0.60-3251 Bq·kg-1 for 235U, and £0.019-1309 Bq·kg-1 for 236U. The obtained activity ratios are in the range of 0.112-1.086 for 234U/238U, 0.0123-0.1144 for 235U/238U, and 0-0.0078 for 236U/238U, indicating the presence of DU in about 77% of the surface soil samples. At a specific site, the DU inventory in the surface soil is about 140 mg·cm-2, which is 1.68·106 times higher as the estimated mean DU dispersion rate in the region. The uranium concentrations in Kosovo lichen, mushroom, bark, etc., are in the range of 1.97-4.06·104 Bq·kg-1 for 238U, 0.48-5158 Bq·kg-1 for 234U, 0.032-617 Bq·kg-1 for 235U, and £0.019-235 Bq·kg-1 for 236U with mean activity ratios of 0.325±0.0223 for 234U/238U, of 0.0238±0.0122 for 235U/238U, and 0.0034±0.0028 for +U/238U, indicating the presence of DU in the entire sample. On the contrary, the uranium concentrations in Kosovo water samples are low, compared with the water samples collected in central Italy, indicating the presence of negligible amount of DU. The uranium isotopes in Kosovo waters do not constitute a risk of health at the present time. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Nearshore surface sediments from various locations of the West Coast of India were leached by saturated ammonium carbonate solution for the extraction of uranium isotopes. The reagent chosen was found to have high efficiency for leaching uranium isotopes without attacking the mineral core of the sediment particle. The activity ratios of234U/238U are in the range of 1.11 to 1.14 and the activity ratios of235U/235U are in the range of 0.045 to 0.047. The respective activity ratios in leachates, and residues after removal of surface organic matter from the sediment particles by treatment with hydrogen peroxide and 0.05M HCl, revealed disequilibrium between238U and234U only in the surface organic matter. The activity ratios of234U/238U and235U/238U have also been determined in some seawater samples from the Arabian Sea.  相似文献   

7.
This paper presents the isotope hydrochemical results of groundwaters from southwest Punjab for assessing the uranium contamination and evaluating the factors leading to elevated uranium concentration. A total of 35 samples covering shallow and deep zones were collected for hydrochemistry and isotopes. Uranium concentration ranges between 2.3 and 357 µg L?1 and 66% of the samples are contaminated. Both shallow and deep zones show U contamination but high incidences are noticed in shallow zone. Hydrochemical correlations infer geological sources rather than anthropogenic sources responsible for U contamination. Isotopically there is no clear distinction between high and low U groundwater.  相似文献   

8.
Radioecology around a closed uranium mine   总被引:1,自引:0,他引:1  
The uranium mine and mill at ?irovski vrh, Slovenia, operated from 1982 to 1990. After processing, the uranium mill tailings were deposited onto the Bor?t waste pile lying close to the mine. Radioecological studies focused on assessing the mobility and bioavailability of deposited radionuclides were initiated some five years ago. The mobility of 238U, 234U, 230Th and 226Ra in soil was studied by applying sequential extraction protocols. The highest activity concentrations were found at the bottom of the waste pile. Uranium isotopes were the most mobile, followed by 226Ra whose mobility appeared to be suppressed by high sulphate concentrations and 230Th. The wetland plants grown in soils contaminated with seepage waters from the tailings contained higher levels of 238U, 226Ra and 230Th compared to plants from a control site. The activity concentration of 226Ra was the highest in all studied plant species. The radiological risk to wildlife around the mine area as assessed by the ERICA Tool was negligible. Activity concentrations in bovine milk from the area of ?irovski vrh were comparable to the reference location, except for uranium where the content was higher. The combined annual effective dose for adults consuming milk from the ?irovski vrh area is 13.0 ± 1.7 μSv a?1.  相似文献   

9.
The determination of isotopes of uranium by alpha spectrometry in different environmental components (sediments, soil, water, plants and phosphogypsum) is presented and discussed in this paper. The alpha spectrometry is a very convenient and good technique for activity concentration of natural uranium isotopes (234U, 235U, 238U) in environmental samples and provides the most accurate determination of isotopic activity ratios between 234U and 238U. The analysis were provided information about possible sources of high concentrations of uranium in the examined sites determined by anthropogenic sources. The calculation of values 234U/238U in all analyzed samples was applied to identifying natural or anthropogenic uranium origin. Activity concentration of uranium isotopes in analyzed environmental samples shows that measurement of uranium levels is of great importance for environmental and safety assessment especially in contaminated areas (phosphogypsum waste heap).  相似文献   

10.
A novel highly sensitive and specific electrochemical biosensor for detecting uranium based on specific Deoxyribozymes and gold nanoparticles (AuNPs) is reported. In this work, AuNPs provide excellent electrochemical signal transduction and a large surface area for immobilising numerous Deoxyribozymes, so a low detection limit of 3.24 ng L?1 uranium and a good linear relationship over the range 5.94–35.1 ng L?1 (= 0.994) were obtained. The proposed biosensor presents high specificity and selectivity for uranium and is not affected by other metal ions. Thus, the biosensor protocol offers good selectivity, rapid speed and operational convenience for detection uranium in liquid waste.  相似文献   

11.
Certified reference material (CRM) 115, Uranium (Depleted) Metal (Uranium Assay Standard), was analyzed using a TRITON Thermal Ionization Mass Spectrometer to characterize the uranium isotope-amount ratios. The certified 235U/238U “major” isotope-amount ratio of 0.0020337 (12) in CRM 115 was determined using the total evaporation (TE) and the modified total evaporation (MTE) analytical techniques. In the MTE method, the total evaporation process is interrupted on a regular basis to allow correction of background from peak tailing, internal calibration of the secondary electron multiplier detector versus the Faraday cups, peak-centering, and ion source re-focusing. For the “minor” 234U/238U and 236U/238U isotope-amount ratio measurements using MTE, precision and accuracy comparable to conventional analyses are achieved, without compromising the quality of the 235U/238U isotope-amount ratios. Characterized values of the 234U/238U and 236U/238U isotope-amount ratios in CRM 115 are 0.000007545 (10) and 0.000032213 (84), respectively. The 233U/238U isotope-amount ratio in CRM 115 is estimated to be <5 × 10?9. The homogeneity of the CRM 115 materials is established through the absence of any statistically significant unit-to-unit variation in the uranium isotope-amount ratios. The measurements leading to the certification of uranium isotope-amount ratios are discussed.  相似文献   

12.
Dispersive liquid–liquid microextraction (DLLME) was combined with flow injection inductively coupled plasma mass spectrometry for simultaneous determination of cadmium, lead and bismuth in water samples. The metal elements were complexed with sodium diethyldithiocarbamate, and then the complexes were extracted into carbon tetrachloride by using DLLME. Under the optimized conditions, the enrichment factors for Cd, Pb and Bi are 460, 900 and 645 in 5 mL of a spiked water sample, respectively. The calibration graphs for the three metals are linear in the range of concentrations from <10 ng L?1 to 1,000 ng L?1. The detection limits are 0.5 ng L?1, 1.6 ng L?1 and 4.7 ng L?1, respectively. The relative standard deviations for ten replicate measurements of 50 ng L?1 cadmium, lead and bismuth are 2.6%, 6.7%, and 4.9%, respectively, and the relative recoveries in various water samples at a spiking level of 50 ng L?1 range from 83.6% to 107.0%.  相似文献   

13.
A method for the determination of uranium and 210Po in high salinity water samples has been elaborated. Both radionuclides are preconcentrated from 0.5 dm3 saline media by co-precipitation with hydrated manganese dioxide, followed by dissolution of the precipitate in 200 mL of 1 M HCl. Uranium isotopes 235U and 238U can be directly determined by ICP MS method with a detection limit of 0.01 ppb for 238U. Prior to a selective determination of 210Po, the majority of other naturally occurring α-emitting radionuclides (uranium, thorium and protactinium) can be stripped from this solution by their extraction with a 50% solution of HDEHP in toluene. Finally, 210Po is simply separated by direct transfer to an extractive scintillator containing 5% of trioctylphosphine oxide in Ultima Gold F cocktail and determined by an α/β separation liquid scintillation technique with detection limit below 0.1 mBq/dm3.  相似文献   

14.
This study was undertaken to assess uranium in groundwater and radiological and chemical risks associated with its ingestion in rural habitats in the vicinity of proposed nuclear power project in Western Haryana, India. Uranium concentration in the groundwater of the study area varied from 0.3 to 256.4 μg L?1. Radiological risk calculated in the form of average life time dose was found 5.1 × 10?2 mSv to the residents of the area from the ingestion of groundwater. The average cancer mortality and average cancer morbidity risk were calculated to be 4.9 × 10?6 and 7.7 × 10?6 respectively indicating the absence of carcinogenic risks. Chemical risk was in the range of 0.02–18.8 µg kg?1 day?1. Hazard quotient for 72 % samples was greater than unity which indicates health risk due to chemical toxicity of uranium in groundwater. The results indicate that uranium concentrations in the groundwater of the study area are important due to chemical risk than radiological risk.  相似文献   

15.
The occurrence of 26 commonly used cytostatic compounds in wastewaters was evaluated using an automated solid-phase extraction (SPE) method with liquid chromatography–high-resolution mass spectrometry (LC–HRMS). Detection was optimized using Oasis HLB SPE cartridges at pH 2. Two hospital effluents and their two receiving wastewater treatment plants were sampled over five days. In hospital effluents, eight cytostatics were detected at levels up to 86.2 μg L?1 for ifosfamide, 4.72 μg L?1 for cyclophosphamide, and 0.73 μg L?1 for irinotecan, the three most relevant compounds identified. Cyclophosphamide and megestrol acetate were found in wastewaters at concentrations up to 0.22 μg L?1 for the latter. The predicted environmental concentrations (PEC) in sewage effluents of ifosfamide (2.4–4.3 ng L?1), capecitabine (11.5–14.2 ng L?1), and irinotecan (0.4–0.6 ng L?1), calculated from consumption data in each hospital, published excretion values for the target compounds, and wastewater elimination rates, were in agreement with experimental values.  相似文献   

16.
This study describes a procedure for determining eight benzophenone-derived compounds in surface waters and sediments. These include the pharmaceutical ketoprofen, its phototransformation products 3-ethylbenzophenone and 3-acetylbenzophenone, and five benzophenone-type ultraviolet (UV) filters. The proposed analytical method involves the pre-concentration of water samples by solid-phase extraction (SPE) and microwave-assisted extraction (MAE) of sediment samples followed by derivatization and analysis by gas chromatography–mass spectrometry. Different parameters were investigated to achieve optimal method performance. Recoveries of 91 to 96 % from water samples were obtained using HLB Oasis SPE cartridges, whereas MAE of sediments (30 min at 150 °C) gave recoveries of 80 to 99 %. Limits of detection were between 0.1 and 1.9 ng L?1 for water samples and from 0.1 to 1.4 ng g?1 for sediment samples. The developed method was applied to environmental samples and revealed the presence of UV filters in the majority of the surface waters with up to 690 ng L?1 of 2-hydroxy-4-methoxybenzophenone. By contrast, ketoprofen (≤2,900 ng L?1) and its degradation products (≤320 ng L?1) were found in only two rivers, both receiving wastewater treatment plant effluents. Sediment analysis revealed benzophenone to be present in concentrations up to 650 ng g?1, whereas concentrations of other compounds were considerably lower (≤32 ng L?1). For the first time, quantifiable amounts of two ketoprofen transformation products in the aqueous environment are reported.  相似文献   

17.
The234U/238U and235U/238U ratios from uranium compounds by -spectrometry technique have been obtained. Ten commercially available uranium reagents were analyzed. The well-separated peaks corresponding to uranium isotopes are evident, providing an energy spectrum of the -particles of uranium isotopes. It was found that some commerical uranium salts were depleted in234U and235U.  相似文献   

18.
Benzoylthiourea derivatives (N,N-diphenyl-N′-(3-methylbenzoyl)thiourea and diphenyl-N′-(4-methylbenzoyl)thiourea) were impregnated onto silica gel. The preconcentration of uranium(VI) from aqueous solution was investigated. Extraction conditions were optimized in batch method prior to determination by uv–visible absorption spectrometry using arsenazo(III). The optimum pH for quantitative adsorption was found as 3–7. Quantitative recovery of uranium (VI) was achieved by stripping with 0.1 mol L?1 HCl. Equilibration time was determined as 30 min for 99% sorption of U(VI). Under optimal conditions, dynamic linear range of for U(VI) was found as 0.25–10 μg mL?1. The relative standard deviation as percentage and detection limit were 5.0% (n = 10) for 10 μg mL?1 U(VI) solution and 8.7 ng mL?1, respectively. The method was employed to the preconcentration of U(VI) ions in soil and tap water samples.  相似文献   

19.
《Analytical letters》2012,45(15):2438-2456
Polychlorinated Biphenyls (PCBs) are persistent organic pollutants with significant bioaccumulation in the global environment. Owing to their high toxicity and lipophilic property, PCBs are potential threat to the human and ecological system.

The objective of this work was to investigate the polychlorinated biphenyls in seawater and blue mussels Mytilus galloprovincialis collected in the eastern coastal side of the Algiers bay. Surface and bottom water samples were collected at six different periods from July to October 2002 in the port of Tamentfoust and four locations around the port. Mussel samples were collected from Tamentfoust port and Surcouf beach. After extraction, the PCBs levels were determined in marine water and biological samples by gas chromatography with electron capture detector. Total polychlorinated biphenyls concentrations varied from 4.0 to 18.8 ng · L?1 in surface and from 4.4 to 16.6 ng · L?1 in bottom seawater and were relatively high in August (30th and 45th days).

In mussels that concentrate the organochlorinated compounds in their tissues, the sum of ICES 7 PCBs concentrations was relatively high. It ranged from 64.2 to 185.8 ng · g?1 dw (average 125.8 ng · g?1 dw) in samples collected from Surcouf. The level of contamination in Tamentfoust port mussels was about twice higher (225.2 ng · g?1 dw).

The observed PCBs distribution was close to that of common commercial mixture and suggests an industrial origin of this pollution emitted from a continental source in addition to the port activities. Although the use of target compounds has been banned for more than three decades, they are still persistent in Algiers Bay.  相似文献   

20.
Phosphate deposits are generally characterized by high levels of natural radionuclide concentrations. Natural radionuclides from the uranium and thorium series were measured, using high-resolution gamma-spectrometry in phosphate rock and phosphogypsum samples from the phosphate fertilizer industry in India. Equilibrium was found to be disrupted during the chemical processing of phosphate rock with 83 % of the 226Ra and only 5 % of 238U fractionating to phosphogypsum. Activity concentrations of 238U and 226Ra in phosphogypsum produced from various fertilizer industries of India showed levels < 1,000 Bq kg?1 and pose no restriction for use in building/construction material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号