首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
通过研究几类图簇匹配多项式的因式分解,证明了这几类图簇的非匹配唯一性,并得到这些图簇匹配等价图的结构特征.  相似文献   

2.
几类图的匹配多项式之间的关系与一类图的匹配等价图   总被引:1,自引:0,他引:1  
研究了几类图的匹配多项式以及它们之间的一些整除关系,给出了路的匹配多项式相互整除的一个充分必要条件,并且刻画了图T2,2,n的所有匹配等价图.  相似文献   

3.
几类图的匹配等价图类   总被引:1,自引:0,他引:1  
两个图G和H的匹配多项式相等,则称它们匹配等价.用[G]表示图G的所有不同构的匹配等价图的集合.刻画了匹配次大根小于1的图及这些图的补图的匹配等价图类.  相似文献   

4.
匹配最大根小于等于2的图的匹配等价   总被引:2,自引:0,他引:2  
马海成 《数学学报》2006,49(6):1355-136
给出了十六个匹配等价桥,证明了两个匹配最大根小于等于2的图匹配等价当且仅当它们之间可以由这十六个匹配等价桥进行等价转换,完整地刻画了这些图的补图的匹配等价图类,找到了这些图和它们的补图中的所有匹配唯一图.  相似文献   

5.
设G是含有完美匹配的简单图.称图G是偶匹配可扩的(BM-可扩的),如果G的每一个导出子图是偶图的匹配M都可以扩充为一个完美匹配.极图问题是图论的核心问题之一.本文将刻画极大偶匹配不可扩图,偶图图类和完全多部图图类中的极大偶匹配可扩图.  相似文献   

6.
宋晓新 《数学研究》2006,39(2):129-132
目前我们已知的极大导出匹配可扩图只有Kn,n和K2n.为了研究它们是否是仅有的极大导出匹配可扩图,我们考虑了匹配数,导出匹配数,极大导出匹配可扩图以及一个相关的猜想,并得出了若干相关的结果.  相似文献   

7.
几类图簇的伴随多项式的因式分解及色性分析   总被引:28,自引:0,他引:28  
张秉儒 《数学学报》2002,45(3):529-534
我们通过研究图的伴随多项式的因式分解,给出了证明非色唯一图的一种新方法,并得到了几类图簇的色等价图的结构特征.  相似文献   

8.
一个图的条件匹配排除数是最少的边的数量,使得从图中删除这些边后形成的图既没有孤立点,也没有完美匹配和几乎完美匹配.条件匹配排除数是衡量网络在边故障情况下的鲁棒性的参数之一.本文给出了对称群上Cayley图的条件匹配排除数.  相似文献   

9.
一类Caterpillars图的匹配刻画   总被引:1,自引:0,他引:1  
利用匹配多项式的性质以及匹配根的信息研究了图的匹配刻画问题,给出了一类Caterpillars图F(2,m,3)及补图匹配刻画的充分必要条件是m=2,5,8.  相似文献   

10.
设γ(G) 是图G的点控制数. 如果对任意的v ∈ V (G), 都有γ(G?v) < γ(G) 成立, 那么称G为γ-点临界图. 本文主要给出Ananchuen 和Plummer 提出的一个猜想的证明, 得到了如下的结果:若G是无K1,7的3-点临界图, 且阶数为不小于18的偶数, 则除几类特殊图外, G 均有完美匹配.  相似文献   

11.
吴龙树  王勤  原晋江 《数学研究》2002,35(2):147-151
称图G为导出匹配图可扩的(简称为IM-可扩的),如果图G的一每个导出匹配都包含在G的一个完美匹配中,本给出了导出匹配可扩图的一些局部运算。  相似文献   

12.
A graph with at least two vertices is matching covered if it is connected and each edge lies in some perfect matching. A matching covered graph G is extremal if the number of perfect matchings of G is equal to the dimension of the lattice spanned by the set of incidence vectors of perfect matchings of G. We first establish several basic properties of extremal matching covered graphs. In particular, we show that every extremal brick may be obtained by splicing graphs whose underlying simple graphs are odd wheels. Then, using the main theorem proved in 2 and 3 , we find all the extremal cubic matching covered graphs. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 19–50, 2005  相似文献   

13.
A matching M in a graph G is uniquely restricted if there is no matching in G that is distinct from M but covers the same vertices as M. Solving a problem posed by Golumbic, Hirst, and Lewenstein, we characterize the graphs in which some maximum matching is uniquely restricted. Solving a problem posed by Levit and Mandrescu, we characterize the graphs in which every maximum matching is uniquely restricted. Both our characterizations lead to efficient recognition algorithms for the corresponding graphs.  相似文献   

14.
The problem of determining a maximum matching or whether there exists a perfect matching, is very common in a large variety of applications and as been extensively studied in graph theory. In this paper we start to introduce a characterisation of a family of graphs for which its stability number is determined by convex quadratic programming. The main results connected with the recognition of this family of graphs are also introduced. It follows a necessary and sufficient condition which characterise a graph with a perfect matching and an algorithmic strategy, based on the determination of the stability number of line graphs, by convex quadratic programming, applied to the determination of a perfect matching. A numerical example for the recognition of graphs with a perfect matching is described. Finally, the above algorithmic strategy is extended to the determination of a maximum matching of an arbitrary graph and some related results are presented.  相似文献   

15.
The problem of determining a maximum matching or whether there exists a perfect matching, is very common in a large variety of applications and as been extensively studied in graph theory. In this paper we start to introduce a characterisation of a family of graphs for which its stability number is determined by convex quadratic programming. The main results connected with the recognition of this family of graphs are also introduced. It follows a necessary and sufficient condition which characterise a graph with a perfect matching and an algorithmic strategy, based on the determination of the stability number of line graphs, by convex quadratic programming, applied to the determination of a perfect matching. A numerical example for the recognition of graphs with a perfect matching is described. Finally, the above algorithmic strategy is extended to the determination of a maximum matching of an arbitrary graph and some related results are presented.  相似文献   

16.
A graph is called matching covered if for its every edge there is a maximum matching containing it. It is shown that minimal matching covered graphs without isolated vertices contain a perfect matching.  相似文献   

17.
A matching covered graph is a non-trivial connected graph in which every edge is in some perfect matching. A non-bipartite matching covered graph G is near-bipartite if there are two edges e1 and e2 such that Ge1e2 is bipartite and matching covered. In 2000, Fischer and Little characterized Pfaffian near-bipartite graphs in terms of forbidden subgraphs [I. Fischer, C.H.C. Little, A characterization of Pfaffian near bipartite graphs, J. Combin. Theory Ser. B 82 (2001) 175-222.]. However, their characterization does not imply a polynomial time algorithm to recognize near-bipartite Pfaffian graphs. In this article, we give such an algorithm.We define a more general class of matching covered graphs, which we call weakly near-bipartite graphs. This class includes the near-bipartite graphs. We give a polynomial algorithm for recognizing weakly near-bipartite Pfaffian graphs. We also show that Fischer and Little’s characterization of near-bipartite Pfaffian graphs extends to this wider class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号