首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uptake of SO2 on HOBr-treated ice surfaces has been studied using a flow reactor coupled with a differentially pumped quadrupole mass spectrometer at 190-240 K. The initial uptake coefficient was determined as a function of HOBr surface coverage, theta(HOBr), on the ice. The uptake coefficients increase as the HOBr coverage increases. The uptake coefficient can be expressed as gamma(t) = k(h)theta(HOBr), where k(h) = 1.5 x 10(-19) molecules(-1) cm(-2) at 191 K and k(h) = 6.4 x 10(-21) molecules(-1) cm(-2) at 210 K and theta(HOBr) is in the range of 8 x 10(13) to 1.2 x 10(15) molecules cm(-2). The effects of temperature and film thickness on the uptake coefficients of SO2 by the HOBr-treated ice films were also studied. The activation energy E(a) of SO(2) on HOBr-ice surfaces is approximately -81 +/- 8 kJ/mol in the 190-215 K range. Kinetic results were interpreted in terms of the Eley-Rideal mechanism. This study suggests that the uptake of SO2 on ice/snow surfaces is enhanced by the presence of HOBr near the ice surface. The implication for atmospheric chemistry is that HOBr-ice surfaces may not provide a significant pathway to oxide S(IV) in the boundary layer due to both lower uptake coefficient and smaller HOBr surface coverage at T > 220 K.  相似文献   

2.
The uptake of NH3 and the heterogeneous reaction of NH3 + HOBr --> products on ice surfaces at 190 K have been investigated in a flow reactor coupled with a differentially pumped quadrupole mass spectrometer. The uptake coefficient gammat for NH3 was determined to be (3.8 +/- 1.4) x 10(-4) on ice films at 189.8 K, for a partial pressure of NH3 in the range of 7.0 x 10(-7) to 3.8 x 10(-6) torr. The amount of NH3 uptake on the ice film was determined to be >2.9 x 10(15) molecules/cm(2), based on the total ice surface area at 189.2 K. The heterogeneous reaction of NH3 + HOBr on ice surfaces has been studied at 190 K. The reaction probability gammat was determined to be (5.3 +/- 2.2) x 10(-4) and was found to vary insignificantly as HOBr surface coverage changes from 2.1 x 10(13) to 2.1 x 10(14) molecules/cm(2). A reaction pathway is proposed on the basis of experimental observations.  相似文献   

3.
We studied diffusion of water molecules in the direction perpendicular to the surface of an ice film. Amorphous ice films of H(2)O were deposited on Ru(0001) at temperature of 100-140 K for thickness of 1-5 bilayer (BL) in vacuum, and a fractional coverage of D(2)O was added onto the surface. Vertical migration of surface D(2)O molecules to the underlying H(2)O multilayer and the reverse migration of H(2)O resulted in change of their surface concentrations. Temporal variation of the H(2)O and D(2)O surface concentrations was monitored by the technique of Cs(+) reactive ion scattering to reveal kinetics of the vertical diffusion in depth resolution of 1 BL. The first-order rate coefficient for the migration of surface water molecules ranged from k(1)=5.7(+/-0.6) x 10(-4) s(-1) at T=100 K to k(1)=6.7(+/-2.0) x 10(-2) s(-1) at 140 K, with an activation energy of 13.7+/-1.7 kJ mol(-1). The equivalent surface diffusion coefficients were D(s)=7 x 10(-19) cm(2) s(-1) at 100 K and D(s)=8 x 10(-17) cm(2) s(-1) at 140 K. The measured activation energy was close to interstitial migration energy (15 kJ mol(-1)) and was much lower than diffusion activation energy in bulk ice (52-70 kJ mol(-1)). The result suggested that water molecules diffused via the interstitial mechanism near the surface where defect concentrations were very high.  相似文献   

4.
A kinetic study of the reactions of ground state V, Fe, and Co with SO2 is reported. V, Fe, and Co were produced by the 248 nm photodissociation of VCl4, ferrocene, and Co(C5H5)(CO)2, respectively, and were detected by laser-induced fluorescence. V + SO2 proceeds by an abstraction reaction with rate constants given by k=(2.33 +/- 0.57)x 10(-10) exp[-(1.14 +/- 0.19) kcal mol(-1)/RT] cm3 molecule(-1) s(-1) over the temperature range 296-571 K. Fe + SO2 was studied in the N2 buffer range of 10-185 Torr between 294 and 498 K. The limiting, low-pressure third-order rate constants are given by k(0)=(3.45 +/- 1.19)x 10(-30) exp[-(2.81 +/- 0.24) kcal mol(-1)/RT] cm6 molecule(-2) s(-1). Co + SO2 was studied in the CO2 buffer range of 5-40 Torr between 294 and 498 K. This reaction is independent of temperature over the indicated range and has a third-order rate constant of k0=(5.23 +/- 0.28)x 10(-31) cm6 molecule(-2) s(-1). Results of this work are compared to previous work on the Sc, Ti, Cr, Mn, and Ni + SO2 systems. The reaction efficiencies for the abstraction reactions depend on the ionization energies of the transition metal atoms and on the reaction exothermicities, and the reaction efficiencies of the association reactions are strongly dependent on the energies needed to promote an electron from a 4s2 configuration to a 4s1 configuration.  相似文献   

5.
Reaction probabilities of gaseous nitrous acid, HONO, with HCl, HBr, and HI treated ice surfaces have been investigated in a fast flow-tube reactor coupled with a differentially pumped quadrupole mass spectrometer (QMS) at 191 K. The reaction probability increases with the HX surface coverage, and the rate is the highest for the HONO reaction on the HI-treated ice surface. Relative rate constants are correlated to the nucleophilic parameter, according to the linear free-energy relationship for this series of heterogeneous reactions on ice surfaces. The correlation was also extended to HOCl + HX(ad) reactions on the ice surface, and it can be used to treat other heterogeneous atmospheric and catalytic reactions. The reaction products ClNO and BrNO were determined by the QMS. INO was found to rapidly convert to I2 on surfaces, and I2 was observed from the reaction of HONO + HI. The uptake coefficient of I2 on the HI-treated ice surface is higher than that for I2 on the water-ice surface.  相似文献   

6.
The reactions of SO3 with H, O, and OH radicals have been investigated by ab initio calculations. For the SO3 + H reaction (1), the lowest energy pathway involves initial formation of HSO3 and rearrangement to HOSO2, followed by dissociation to OH + SO2. The reaction is fast, with k(1) = 8.4 x 10(9)T(1.22) exp(-13.9 kJ mol(-1)/RT) cm(3) mol(-1) s(-1) (700-2000 K). The SO3 + O --> SO2 + O2 reaction (2) may proceed on both the triplet and singlet surfaces, but due to a high barrier the reaction is predicted to be slow. The rate constant can be described as k(2) = 2.8 x 10(4)T(2.57) exp(-122.3 kJ mol(-1)/RT) cm(3) mol(-1) s(-1) for T > 1000 K. The SO3 + OH reaction to form SO2 + HO2 (3) proceeds by direct abstraction but is comparatively slow, with k(3) = 4.8 x 10(4)T(2.46) exp(-114.1 kJ mol(-) 1/RT) cm(3) mol(-1) s(-1) (800-2000 K). The revised rate constants and detailed reaction mechanism are consistent with experimental data from batch reactors, flow reactors, and laminar flames on oxidation of SO2 to SO3. The SO3 + O reaction is found to be insignificant during most conditions of interest; even in lean flames, SO3 + H is the major consumption reaction for SO3.  相似文献   

7.
The thermal dissociation of SO3 has been studied for the first time in the 1000-1400 K range. The experiments were conducted in a laminar flow reactor at atmospheric pressure, with nitrogen as the bath gas. On the basis of the flow reactor data, a rate constant for SO3 + N2 --> SO2 + O + N2 (R1b) of 5.7 x 10(17) exp(-40000/T) cm3/(mol s) is derived for the temperature range 1273-1348 K. The estimated uncertainty is a factor of 2. The rate constant corresponds to a value of the reverse reaction of k1 approximately 1.8 x 10(15) cm6 mol(-2) s(-1). The reaction is in the fall-off region under the investigated conditions. The temperature and pressure dependence of SO2 + O (+N2) was estimated from the extrapolation of low temperature results for the reaction, together with an estimated broadening parameter and the high-pressure limit determined recently by Naidoo, Goumri, and Marshall (Proc. Combust. Inst. 2005, 30, 1219-1225). The theoretical rate constant is in good agreement with the experimental results. The improved accuracy in k(1) allows a reassessment of the rate constant for SO3 + O --> SO2 + O2 (R2) based on the data of Smith, Tseregounis, and Wang (Int. J. Chem. Kinet. 1982, 14, 679-697), who conducted experiments on a low-pressure CO/O2/Ar flame doped with SO2. At the location in the flame where the net SO3 formation rate is zero, k2 = k1[SO2][M]/[SO3]. A value of 6.9 x 10(10) cm3 mol(-1) s(-1) is obtained for k2 at 1269 K with an uncertainty a factor of 3. A recommended rate constant k2 = 7.8 x 10(11) exp(-3065/T) cm3 mol(-1) s(-1) is consistent with other flame results as well as the present flow reactor data.  相似文献   

8.
The potential energy surface for the CH(2)O + ClO reaction was calculated at the QCISD(T)/6-311G(2d,2p)//B3LYP/6-311G(d,p) level of theory. The rate constants for the lower barrier reaction channels producing HOCl + HCO, H atom, OCH(2)OCl, cis-HC(O)OCl and trans-HC(O)OCl have been calculated by TST and multichannel RRKM theory. Over the temperature range of 200-2000 K, the overall rate constants were k(200-2000K) = 1.19 x 10(-13)T(0.79) exp(-3000.00/T). At 250 K, the calculated overall rate constant was 5.80 x 10(-17) cm(3) molecule(-1) s(-1), which was in good agreement with the experimental upper limit data. The calculated results demonstrated that the formation of HOCl + HCO was the dominant reaction channel and was exothermic by 9.7 kcal/mol with a barrier of 5.0 kcal/mol. When it retrograded to the reactants CH(2)O + ClO, an energy barrier of 14.7 kcal/mol is required. Furthermore, when HOCl decomposed into H + ClO, the energy required was 93.3 kcal/mol. These results suggest that the decomposition in both the forward and backward directions for HOCl would be difficult in the ground electronic state.  相似文献   

9.
The reactive uptake kinetics of ClONO(2) on pure and doped water-ice surfaces have been studied using a coated wall flow tube reactor coupled to an electron impact mass spectrometer. Experiments have been conducted on frozen film ice surfaces in the temperature range 208-228 K with P((ClONO)(2)) < or = 10(-6) Torr. The uptake coefficient (gamma) of ClONO(2) on pure ice was time dependent with a maximum value of gamma(max) approximately 0.1. On HNO(3)-doped ice at 218 K the gamma(max) was 0.02. HOCl formation was detected in both experiments. On HCl-doped ice, uptake was gas-phase diffusion limited (gamma > 0.1) and gas-phase Cl(2) was formed. The uptake of HCl on ice continuously doped with HNO(3) was reversible such that there was no net uptake of HCl once the equilibrium surface coverage was established. The data were well described by a single site 2-species competitive Langmuir adsorption isotherm. The surface coverage of HCl on HNO(3)-doped ice was an order of magnitude lower than on bare ice for a given temperature and P(HCl). ClONO(2) uptake on this HCl/HNO(3)-doped ice was studied as a function of P(HCl). gamma(max) was no longer gas-phase diffusion limited and was found to be linearly dependent on the surface concentration of HCl. Under conditions of low HCl surface concentration, hydrolysis of ClONO(2) and reaction with HCl were competing such that both Cl(2) and HOCl were formed. A numerical model was used to simulate the experimental results and to aid in the parametrization of ClONO(2) reactivity on cirrus ice clouds in the upper troposphere.  相似文献   

10.
The rate and thermodynamics of the adsorption of acetone on ice surfaces have been studied in the temperature range T = 190-220 K using a coated-wall flow tube reactor (CWFT) coupled with QMS detection. Ice films of 75 +/- 25 microm thickness were prepared by coating the reactor using a calibrated flow of water vapor. The rate coefficients for adsorption and desorption as well as adsorption isotherms have been derived from temporal profiles of the gas phase concentration at the exit of the flow reactor together with a kinetic model that has recently been developed in our group to simulate reversible adsorption in CWFTs (Behr, P.; Terziyski, A.; Zellner, R. Z. Phys. Chem. 2004, 218, 1307-1327). It is found that acetone adsorption is entirely reversible; the adsorption capacity, however, depends on temperature and decreases with the age of the ice film. The aging effect is most pronounced at low acetone gas-phase concentrations (< or = 2.0 x 10(11) molecules/cm(3)) and at low temperatures. Under these conditions, acetone is initially adsorbed with a high rate and high surface coverage that, upon aging, both become lower. This effect is explained by the existence of initially two adsorption sites (1) and (2), which differ in nature and number density and for which the relative fractions change with time. Using two-site dynamic modeling, the rate coefficients for adsorption (k(ads)) and desorption (k(des)) as well as the Langmuir constant (K(L)) and the maximum number of adsorption sites (c(s,max)), as obtained for the adsorption of acetone on sites of types (1) and (2) in the respective temperature range, are k(ads)(1) = 3.8 x 10(-14) T(0.5) cm(3) s(-1), k(des)(1) = 4.0 x 10(11) exp(-5773/T) s(-1), K(L) (1) = 6.3 x 10(-25) exp(5893/T) cm(3), c(s,max)(1) < or = 10(14) cm(-2) and k(ads)(2) = 2.9 x 10(-15) T(0.5) cm(3) s(-1), k(des)(2) = 1.5 x 10(7) exp(-3488/T) s(-1), K(L)(2) = 5.0 x 10(-22) exp(3849/T) cm(3), c(s,max)(2) = 6.0 x 10(14) cm(-2), respectively. On the basis of these results, the adsorption of acetone on aged ice occurs exclusively on sites of type (2). Among the possible explanations for the time-dependent two-site adsorption behavior, i.e., crystallographic differences, molecular or engraved microstructures, or a mixture of the two, we tentatively accept the former, i.e., that the two adsorption sites correspond to cubic (1, I(c)) and hexagonal (2, I(h)) sites. The temporal change of I(c) to I(h) and, hence, the time constants of aging are consistent with independent information in the literature on these phase changes.  相似文献   

11.
Thermal rate coefficients for the removal (reaction + quenching) of O2(1sigma(g)+) by collision with several atmospheric molecules were determined to be as follows: O3, k3(210-370 K) = (3.63 +/- 0.86) x 10(-11) exp((-115 +/- 66)/T); H2O, k4(250-370 K) = (4.52 +/- 2.14) x 10(-12) exp((89 +/- 210)/T); N2, k5(210-370 K) = (2.03 +/- 0.30) x 10(-15) exp((37 +/- 40)/T); CO2, k6(298 K) = (3.39 +/- 0.36) x 10(-13); CH4, k7(298 K) = (1.08 +/- 0.11) x 10(-13); CO, k8(298 K) = (3.74 +/- 0.87) x 10(-15); all units in cm3 molecule(-1) s(-1). O2(1sigma(g)+) was produced by directly exciting ground-state O2(3sigma(g)-) with a 762 nm pulsed dye laser. The reaction of O2(1sigma(g)+) with O3 was used to produce O(3P), and temporal profiles of O(3P) were measured using VUV atomic resonance fluorescence in the presence of the reactant to determine the rate coefficients for removal of O2(1sigma(g)+). Our results are compared with previous values, where available, and the overall trend in the O2(1sigma(g)+) removal rate coefficients and the atmospheric implications of these rate coefficients are discussed. Additionally, an upper limit for the branching ratio of O2(1sigma(g)+) + CO to give O(3P) + CO2 was determined to be < or = 0.2% and this reaction channel is shown to be of negligible importance in the atmosphere.  相似文献   

12.
The rate coefficients for the reactions OH + ClOOCl --> HOCl + ClOO (eq 5) and OH + Cl2O --> HOCl + ClO (eq 6) were measured using a fast flow reactor coupled with molecular beam quadrupole mass spectrometry. OH was detected using resonance fluorescence at 309 nm. The measured Arrhenius expressions for these reactions are k5 = (6.0 +/- 3.5) x 10(-13) exp((670 +/- 230)/T) cm(3) molecule(-1) s(-1) and k6 = (5.1 +/- 1.5) x 10(-12) exp((100 +/- 92)/T) cm(3) molecule(-1) s(-1), respectively, where the uncertainties are reported at the 2sigma level. Investigation of the OH + ClOOCl potential energy surface using high level ab initio calculations indicates that the reaction occurs via a chlorine abstraction from ClOOCl by the OH radical. The lowest energy pathway is calculated to proceed through a weak ClOOCl-OH prereactive complex that is bound by 2.6 kcal mol(-1) and leads to ClOO and HOCl products. The transition state to product formation is calculated to be 0.59 kcal mol(-1) above the reactant energy level. Inclusion of the OH + ClOOCl rate data into an atmospheric model indicates that this reaction contributes more than 15% to ClOOCl loss during twilight conditions in the Arctic stratosphere. Reducing the rate of ClOOCl photolysis, as indicated by a recent re-examination of the ClOOCl UV absorption spectrum, increases the contribution of the OH + ClOOCl reaction to polar stratospheric loss of ClOOCl.  相似文献   

13.
Cavity ring-down spectroscopy was used to study the reaction of ClOO with NO in 50-150 Torr total pressure of O2/N2 diluent at 205-243 K. A value of k(ClOO+NO) = (4.5 +/- 0.9) x 10(-11) cm3 molecule(-1) s(-1) at 213 K was determined (quoted uncertainties are two standard deviations). The yield of NO(2) in the ClOO + NO reaction was 0.18 +/- 0.02 at 213 K and 0.15 +/- 0.02 at 223 K. An upper limit of k(ClOO+Cl2) < 3.5 x 10(-14) cm3 molecule(-1) s(-1) was established at 213 K. Results are discussed with respect to the atmospheric chemistry of ClOO and other peroxy radicals.  相似文献   

14.
The kinetics and mechanism of the reaction Cl + CH3(CH2)3CHO was investigated using absolute (PLP-LIF) and relative rate techniques in 8 Torr of argon or 800-950 Torr of N2 at 295 +/- 2 K. The absolute rate experiments gave k[Cl+CH3(CH2)3CHO] = (2.31 +/- 0.35) x 10(-10) in 8 Torr of argon, while relative rate experiments gave k[Cl+CH3(CH2)3CHO] = (2.24 +/- 0.20) x 10(-10) cm3 molecule(-1) s(-1) in 800-950 Torr of N2. Additional relative rate experiments gave k[Cl+CH3(CH2)3C(O)Cl] = (8.74 +/- 1.38) x 10(-11) cm3 molecule-1 s(-1) in 700 Torr of N2. Smog chamber Fourier transform infrared (FTIR) techniques indicated that the acyl-forming channel accounts for 42 +/- 3% of the reaction. The results are discussed with respect to the literature data and the importance of long range (greater than or equal to two carbon atoms along the aliphatic chain) effects in determining the reactivity of organic molecules toward chlorine atoms.  相似文献   

15.
The mechanism for ClO + NH2 has been investigated by ab initio molecular orbital and transition-state theory calculations. The species involved have been optimized at the B3LYP/6-311+G(3df,2p) level and their energies have been refined by single-point calculations with the modified Gaussian-2 method, G2M(CC2). Ten stable isomers have been located and a detailed potential energy diagram is provided. The rate constants and branching ratios for the low-lying energy channel products including HCl + HNO, Cl + NH2O, and HOCl + 3NH (X(3)Sigma(-)) are calculated. The result shows that formation of HCl + HNO is dominant below 1000 K; over 1000 K, Cl + NH2O products become dominant. However, the formation of HOCl + 3NH (X(3)Sigma(-)) is unimportant below 1500 K. The pressure-independent individual and total rate constants can be expressed as k1(HCl + HNO) = 4.7 x 10(-8)(T(-1.08)) exp(-129/T), k(2)(Cl + NH2O) = 1.7 x 10(-9)(T(-0.62)) exp(-24/T), k3(HOCl + NH) = 4.8 x 10(-29)(T5.11) exp(-1035/T), and k(total) = 5.0 x 10(-9)(T(-0.67)) exp(-1.2/T), respectively, with units of cm(3) molecule(-1) s(-1), in the temperature range of 200-2500 K.  相似文献   

16.
The kinetics and mechanism of oxidation of CF3CHFOCH3 was studied using an 11.5-dm3 environmental reaction chamber. OH radicals were produced by UV photolysis of an O3-H2O-He mixture at an initial pressure of 200 Torr in the chamber. The rate constant of the reaction of CF3CHFOCH3 with OH radicals (k1) was determined to be (1.77 +/- 0.69) x 10(-12) exp[(-720 +/- 110)/T] cm3 molecule(-1)(s-1) by means of a relative rate method at 253-328 K. The mechanism of the reaction was investigated by FT-IR spectroscopy at 298 K. CF3CHFOC(O)H, FC(O)OCH3, and COF2 were determined to be the major products. The branching ratio (k1a/k1b) for the reactions CF3CHFOCH3 + OH --> CF3CHFOCH2* + H2O (k1a) and CF3CHFOCH3 + OH --> CF3CF*OCH3 + H2O (k1b) was estimated to be 4.2:1 at 298 K from the yields of CF3CHFOC(O)H, FC(O)OCH3, and COF2. The rate constants of the reactions of CF3CHFOC(O)H (k2) and FC(O)OCH3 (k3) with OH radicals were determined to be (9.14 +/- 2.78) x 10(-13) exp[(-1190 +/- 90)/T] and (2.10 +/- 0.65) x 10(-13) exp[(-630 +/- 90)/T] cm3 molecule(-1)(s-1), respectively, by means of a relative rate method at 253-328 K. The rate constants at 298 K were as follows: k1 = (1.56 +/- 0.06) x 10-13, k2 = (1.67 +/- 0.05) x 10-14, and k3 = (2.53 +/- 0.07) x 10-14 cm3 molecule(-1)(s-1). The tropospheric lifetimes of CF3CHFOCH3, CF3CHFOC(O)H, and FC(O)OCH3 with respect to reaction with OH radicals were estimated to be 0.29, 3.2, and 1.8 years, respectively.  相似文献   

17.
The oxidation of 1-phenyl-2-thiourea (PTU) by chlorite was studied in aqueous acidic media. The reaction is extremely complex with reaction dynamics strongly influenced by the pH of reaction medium. In excess chlorite concentrations the reaction stoichiometry involves the complete desulfurization of PTU to yield a urea residue and sulfate: 2ClO2- + PhN(H)CSNH2 + H2O --> SO4(2-) + PhN(H)CONH2 + 2Cl- + 2H+. In excess PTU, mixtures of sulfinic and sulfonic acids are formed. The reaction was followed spectrophotometrically by observing the formation of chlorine dioxide which is formed from the reaction of the reactive intermediate HOCl and chlorite: 2ClO2- + HOCl + H+ --> 2ClO2(aq) + Cl- + H2O. The complexity of the ClO2- - PTU reaction arises from the fact that the reaction of ClO2 with PTU is slow enough to allow the accumulation of ClO2 in the presence of PTU. Hence the formation of ClO2 was observed to be oligooscillatory with transient formation of ClO2 even in conditions of excess oxidant. The reaction showed complex acid dependence with acid catalysis in pH conditions higher than pKa of HClO2 and acid retardation in pH conditions of less than 2.0. The rate of oxidation of PTU was given by -d[PTU]/dt = k1[ClO2-][PTU] + k2[HClO2][PTU] with the rate law: -d[PTU]/dt = [Cl(III)](T)[PTU]0/K(a1) + [H+] [k1K(a1) + k2[H+]]; where [Cl(III)]T is the sum of chlorite and chlorous acid and K(a1) is the acid dissociation constant for chlorous acid. The following bimolecular rate constants were evaluated; k1 = 31.5+/-2.3 M(-1) s(-1) and k2 = 114+/-7 M(-1) s(-1). The direct reaction of ClO2 with PTU was autocatalytic in low acid concentrations with a stoichiometric ratio of 8:5; 8ClO2 + 5PhN(H)CSNH2 + 9H2O --> 5SO4(2-) + 5PhN(H)CONH2 + 8Cl- + 18H+. The proposed mechanism implicates HOCl as a major intermediate whose autocatalytic production determined the observed global dynamics of the reaction. A comprehensive 29-reaction scheme is evoked to describe the complex reaction dynamics.  相似文献   

18.
A series of gas-phase reactions involving molecular Ca-containing ions was studied by the pulsed laser ablation of a calcite target to produce Ca(+) in a fast flow of He, followed by the addition of reagents downstream and detection of ions by quadrupole mass spectrometry. Most of the reactions that were studied are important for describing the chemistry of meteor-ablated calcium in the earth's upper atmosphere. The following rate coefficients were measured: k(CaO(+) + O --> Ca(+) + O(2)) = (4.2 +/- 2.8) x 10(-11) at 197 K and (6.3 +/- 3.0) x 10(-11) at 294 K; k(CaO(+) + CO --> Ca(+) + CO(2), 294 K) = (2.8 +/- 1.5) x 10(-10); k(Ca(+).CO(2) + O(2) --> CaO(2)(+) + CO(2), 294 K) = (1.2 +/- 0.5) x10(-10); k(Ca(+).CO(2) + H(2)O --> Ca(+).H(2)O + CO(2)) = (13.0 +/- 4.0) x 10(-10); and k(Ca(+).H(2)O + O(2) --> CaO(2)(+) + H(2)O, 294 K) = (4.0 +/- 2.5) x 10(-10) cm(3) molecule(-1) s(-1). The quoted uncertainties are a combination of the 1sigma standard errors in the kinetic data and the systematic errors in the models used to extract the rate coefficients. Rate coefficients were also obtained for the following recombination (also termed association) reactions in He bath gas: k(Ca(+).CO(2) + CO(2) --> Ca(+).(CO(2))(2), 294 K) = (2.6 +/- 1.0) x 10(-29); k(Ca(+).H(2)O + H(2)O --> Ca(+).(H(2)O)(2)) = (1.6 +/- 1.1) x 10(-27); and k(CaO(2)(+) + O(2) --> CaO(2)(+).O(2)) < 1 x 10(-31) cm(6) molecule(-2) s(-1). These recombination rate coefficients, as well as those for the ligand-switching reactions listed above, were then interpreted using a combination of high level quantum chemistry calculations and RRKM theory using an inverse Laplace transform solution of the master equation. The surprisingly slow reaction between CaO(+) and O was explained using quantum chemistry calculations on the lowest (2)A', (2)A' and (4)A' potential energy surfaces. These calculations indicate that reaction mostly occurs on the (2)A' surface, leading to production of Ca(+)((2)S) + O(2)((1)Delta(g)). The importance of this reaction for controlling the lifetime of Ca(+) in the upper mesosphere and lower thermosphere is then discussed.  相似文献   

19.
The kinetics of the O + HCNO reaction were investigated by a relative rate technique using infrared diode laser absorption spectroscopy. Laser photolysis (355 nm) of NO2 was used to produce O atoms, followed by O atom reactions with CS2, NO2, and HCNO, and infrared detection of OCS product from the O + CS2 reaction. Analysis of the experiment data yields a rate constant of k1= (9.84 +/- 3.52) x 10-12 exp[(-195 +/- 120)/T)] (cm3 molecule-1 s-1) over the temperature range 298-375 K, with a value of k1 = (5.32 +/- 0.40) x 10-12 cm3 molecule-1 s-1 at 298 K. Infrared detection of product species indicates that CO producing channels, probably CO + NO + H, dominate the reaction.  相似文献   

20.
Rate coefficients of the reaction S+O(2) with Ar under 50 Torr in the temperature range 298-878 K were determined with the laser photolysis technique. S atoms were generated by photolysis of OCS with a KrF excimer laser at 248 nm; their concentration was monitored via resonance fluorescence excited by atomic emission of S produced from microwave-discharged SO(2). Our measurements show that k(298 K)=(1.92+/-0.29)x10(-12) cm(3) molecule(-1) s(-1), in satisfactory agreement with previous reports. New data determined for 505-878 K show non-Arrhenius behavior; combining our results with data reported at high temperatures, we derive an expression k(T)=(9.02+/-0.27)x10(-19)T(2.11+/-0.15) exp[(730+/-120)/T] cm(3) molecule(-1) s(-1) for 298< or =T< or =3460 K. Theoretical calculations at the G2M (RCC2) level, using geometries optimized with the B3LYP/6-311+G(3df) method, yield energies of transition states and products relative to those of the reactants. Rate coefficients predicted with multichannel RRKM calculations agree satisfactorily with experimental observations; the reaction channel via SOO(1A') dominates at T<500 K, whereas channels involving formation of SOO(3A") followed by isomerization to SO(2) before dissociation, and formation of SOO(1A") followed by direct dissociation, become important at high temperatures, accounting for the observed rapid increase in rate coefficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号