首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The excited states of the water molecule have been analyzed by using the extended quantum-chemical multistate CASPT2 method, namely, MS-CASPT2, in conjunction with large one-electron basis sets of atomic natural orbital type. The study includes 13 singlet and triplet excited states, both valence and 3s-, 3p-, and 3d-members of the Rydberg series converging to the lowest ionization potential and the 3s- and 3p-Rydberg members converging to the second low-lying state of the cation, 1 (2)A(1). The research has been focused on the analysis of the valence or Rydberg character of the low-lying states. The computation of the 1 (1)B(1) state of water at different geometries indicates that it has a predominant 3s-Rydberg character at the equilibrium geometry of the molecule but it becomes progressively a valence state described mainly by the one-electron 1b(1)-->4a(1) promotion, as expected from a textbook of general chemistry, upon elongation of the O-H bonds. The described valence-Rydberg mixing is established to be originated by a molecular orbital (MO) Rydbergization process, as suggested earlier by R. S. Mulliken [Acc. Chem. Res. 9, 7 (1976)]. The same phenomenon occurs also for the 1 (1)A(2) state whereas a more complex behavior has been determined for the 2 (1)A(1) state, where both MO Rydbergization and configurational mixing take place. Similar conclusions have been obtained for the triplet states of the molecule.  相似文献   

2.
Valence and low-lying Rydberg states of acetylene (C2H2) are reexamined in the singlet as well as in the triplet manifold. The major goal of this work is a better understanding of the valence states that contribute to the low-energy electron-energy-loss spectrum recorded under conditions where transitions to triplet states are enhanced. An appropriate theoretical treatment of these states has to include the low-lying Rydberg states because of their energetic proximity to some of the valence states. The CASSCF/CASPT2 method provides a suitable framework for such a task. For some important states the geometry was optimized at the CASPT2 level to allow a comparison with the results of other highly accurate methods that have been applied to acetylene in the past. Received: 11 June 1998 /Accepted: 30 July 1998 / Published online: 19 October 1998  相似文献   

3.
The excited states of ethylene are systematically analyzed and characterized according to the natural orbitals (NOs) resulting from multireference configuration interaction singles and doubles (MRCISD) calculations. By comparing the shapes and nodal structures of the NOs with those of hydrogen atomic orbitals, the Rydberg series can be classified. Two or three different types of Rydberg series appear within five excited states for each symmetry of D2h. For example, in the 1Ag symmetry there are three series having np and two nf hydrogen‐like atomic orbitals. Electronic correlation effects for the (π→π*) V state are also discussed on the basis of a complete active space self‐consistent field (CASSCF) calculation, showing that electron correlation effects merely within the valence space cannot explain contraction of the V state. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

4.
Excited singlet and triplet states of fluorobenzene, aniline, nitrobenzene, toluene, phenol, and phenoxide ion have been calculated using the AM1 semi-empirical method. Electronic transitions have been predicted and compared with experimental values when available.  相似文献   

5.
采用多参考组态相互作用方法和aug-cc-p V5Z基函数组计算了CN+分子11∑+,21∑+,13∑+和13Π电子态的势能曲线。利用MS势能函数拟合得到了相应的解析势能表达式。在此基础上求解CN+分子的核运动薛定谔方程,获得了全部振动和转动能级,并用Dunham系数展开式拟合出了光谱常数,与目前仅有的11∑+,21∑+态的文献报道结果进行了比较。结果可对航天尾气及工业过程光谱方法监控提供参考。  相似文献   

6.
Electronic transitions of low-symmetry molecules indolo[2,3-b]quinoxaline and its two methyl derivatives—were studied by linear dichroism, fluorescence polarization and magnetic circular dichroism methods. Transition moment directions were determined for low-lying excited states and found to be in good agreement with the results of INDO/S calculations.  相似文献   

7.
8.
The CI method is used in the -electron approximation with orbitals for closed and open shells to calculate the properties of excited doublet states with allowance for all singly excited configurations and some doubly excited ones, and also for the first quartet and sextet states, which are calculated in the one-configuration approximation via the open-shell theory. The energies and transition moments agree satisfactorily with the available experimental evidence. A classification and assignment is given for the excited terms. Truncation of the complete set of singly excited configurations greatly distorts the calculated spectrum. Inclusion of doubly excited configurations in the CI also produces a substantial change in the spectrum; in some cases it alters the order of adjacent terms. Conversion in CI from basis closed-shell orbitals to open-shell ones produces a considerable lowering of all terms in the spectrum. As in the case of triplet terms for molecules, weakening of electron interaction brings the lowest excited term of the radical closer to the ground-state term. The electron-density and spin-density distributions are calculated for the excited states.  相似文献   

9.
Excited states of free-base porphyrin isomers, porphycene (Pc), corrphycene (Cor), and hemiporphycene (hPc), were studied by the Symmetry-Adapted Cluster (SAC)/SAC-Configuration Interaction (CI) method. The absorption peaks of the porphyrin isomers were assigned on the basis of the SAC-CI spectra. The X, Y, X', and Y' bands of the porphyrin isomers, which have weak intensities, are identified. The differences in the Q-band absorptions among the isomers were clearly explained by the four-orbital model. In Cor and hPc, the wave function of the B-band corresponds to the mixture of the four-orbital excitations and the optically forbidden excitation of free-base porphin (P), due to the molecular symmetry lowering in the isomers. The B-band character is described by the five-orbital model in Pc and the six-orbital model in Cor and hPc. Two tetrazaporphycenes and two ring-extended (dibenzo) porphycenes were designed, and the Q-band transition moment was successfully controlled. These examples show that the control of the four-orbital energy levels is the guiding principle for pigment design in porphyrin compounds.  相似文献   

10.
 The electronic structure of the TiSi molecule was examined using two types of multireference single and double excitation configuration interactions with highly extended basis sets, one including valence correlation and the other including valence and core–valence correlation. A multireference coupled-pair approximation (MRCPA) was further applied to the latter. The calculations suggest a 5Δ ground state, and the lowest excited state is 3Π and is only slightly (0.12 eV as estimated by MRCPA) above the ground state. The spectroscopic constants of the low-lying 1Δ, 3Δ, 1Π, 5Π, and 7Σ+ states as well as the 5Δ ground state and the 3Π excited states were evaluated, and we found that the molecule has only a weak σ bond and that six of the eight valence electrons essentially do not contribute to the bonding. The bonding nature of TiSi in these states is discussed in comparison with the TiC molecule. Received: 7 October 2000 / Accepted: 8 January 2001 / Published online: 3 May 2001  相似文献   

11.
《Chemical physics letters》1986,127(4):354-359
The results of ab initio SCF and CI calculations on the electronic states of NiCO are reported. The 1Σ+ ground state is a mixture of two primary configurations associated with the Ni 3d10 and 3d94s states, and is bound by 18 kcal mol−1 with respect to Ni and CO at rnic =1.77 Å. The excited states (within 22000 cm−1 of the ground state) can be divided into a lower manifold, principally involving the Ni(3d94s) electronic configuration, and a higher manifold, formally associated with the charge transfer configuration Ni+ (3d9)CO (π1).  相似文献   

12.
S1 --> S(n) spectra of porphyrin, diprotonated porphyrin, and tetraoxaporphyrin dication have been measured in the energy range 2-3 eV above S1 at room temperature in solution by means of transient absorption spectroscopy exciting with femtosecond pulses. Highly excited pi pi* states not active in the conventional S0 --> S(n) spectrum have been observed. The experimental data are discussed on the basis of the time dependent density functional theory taking advantage of large scale calculations of configuration interaction between singly excited configurations (DF/SCI). The DF/SCI calculation on porphyrin has allowed to assign g states active in the S1 --> S(n) spectrum. Applying the same calculation method to tetraoxaporphyrin dication the S0 --> S(n) spectrum is reproduced relatively to the Q and B (Soret) bands as well as to the weaker E(u) bands at higher energy. According to our calculation the S1 --> S(n) transient spectrum is related to states of g symmetry mainly arising from excitations between doubly degenerate pi and pi* orbitals such as 2e(g) --> 4e(g). In the case of diprotonated porphyrin it is shown that the complex of the macrocycle with two trifluoroacetate anions plays a significant role for absorption. Charge transfer excitations from the anions to the macrocycle contribute to absorption above the Soret band, justifying the intensity enhancement of the S0 --> S(n) spectrum with respect to the other two macrocyclic systems.  相似文献   

13.
Applications of deflation techniques to the study of excited states of quantum systems are analyzed. It is demonstrated how these methods allow us to transform the excited state problem of one Hamiltonian, into the ground state problem of an auxiliary one. As an example, potential application in the density functional treatment of excited states is discussed. The inclusion of approximations in this scheme, such as the solution of the proposed model within a finite basis set is discussed. An extension of the Hartree–Fock (HF) method to excited states is presented. This new treatment includes previous self consistent field extensions to excited states and provides us with a way to obtain the HF extension to excited states of any ground state method. These results make the excited states of a system accessible through all ground state theoretical techniques. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
In an attempt to clarify the origin of the dual phosphorescence in phenyl alkyl ketones, we have made some calculation (within the C.I.P.S.I. method in an excitonic scheme) to elucidate the conformation of both ground states and excited states of propiophenone. Our calculations have shown the presence of two stable isomers in the ground state, first n * state, and first * singlet and triplet states. So our work suggests that the origin of the dual phosphorescence of propiophenone could be related to the conformational change of the molecule in the n * state, because the most stable conformations in the n * state and in the ground state are different.  相似文献   

15.
The electron-impact energy-loss spectrum of 1,3,5-cycloheptatriene has been measured at impact energies of 30,50, and 75 eV, and scattering angles varying from 5° to 80 °. Singlet → triplet transitions were observed at 3.05 eV and 3.95 eV. No evidence for the weak transition at 2.1 eV previously reported on the basis of threshold electron-impact studies was found. Single → singlet transitions were observed at 4.85 eV and 6.40 eV in good agreement with the optical spectrum and semi-empirical calculations.  相似文献   

16.
《Tetrahedron》1986,42(1):417-426
SINDO1 studies were performed to optimize the geometry of excited states of some antiaromatic molecules. It is discussed how such states can exhibit aromatic character upon suitable electronic excitation. The nodal pattern of the molecular orbitals involved in the electronic excitation are used to invoke bond equilization in excited states. We have investigated singlet and triplet excited states of five-membered rings C4H5B, C5H5+ and C5H4O containing four π electrons and bicyclic systems bicyclo-(1,1,0)-butadiene, bicyclo-(2,2,0)-hexatriene and benzocylobutadiene. It is seen that in bicyclo-(2,2,0)-hexatriene, both the bicylic structure and the 1,4-diradical structure determine the equilibrium geometry.  相似文献   

17.
A method for excited states is given on the basis of the symmetry-adapted-cluster (SAC) expansion method. It is based on the fact that the SAC expansion method gives incidentally a set of excited functions which satisfies the Brillouin theorem with the ground state.  相似文献   

18.
The structure of hydroxymethyl hydroperoxide (HOCH(2)OOH) (HMHP) has been examined using coupled cluster and multireference configuration interaction methods to study the excited states and probable photodissociation products. The results are compared to experiments. The vertical excitation energies for several excited states of HOCH(2)OOH are presented as well as the excited state energies along the O-O, O-H, C-O, and C-H dissociation pathways. The results help in the interpretation of experimental UV absorption spectra and elucidate the photodissociation mechanism of HMHP under tropospheric conditions.  相似文献   

19.
We report here a summary of a limited CI calculation carried out on the Cv and Dh electronically excited states of bifluoride ion. This species is interesting as the prototype of a hydrogen-bonded system. It is determined that the lowest-lying excited states of the system are dissociative and/or autoionizing.  相似文献   

20.
(Time-dependent) Kohn-Sham density functional theory and a combined density functional/multi-reference configuration interaction method (DFT/MRCI) were employed to explore the ground and low-lying electronically excited states of thiophene. Spin-orbit coupling was taken into account using an efficient, nonempirical mean-field Hamiltonian. Phosphorescence lifetimes were calculated by means of spock.ci, a selecting direct multi-reference spin-orbit configuration interaction program. Throughout this paper, we use the following nomenclature: S1, S2,..., T1, T2,..., denominate electronic structures in their energetic order at the ground state minimum geometry, whereas S1, S2,..., T1, T2,..., refers to the actual order of electronic states at a given nuclear geometry. Multiple minima were found on the first excited singlet (S1) potential energy hypersurface with electronic structures S1 (piHOMO-1-->pi+piHOMO-->pi), S2 (piHOMO-->pi), and S3 (piHOMO-->sigma*) corresponding to the 2 1A1 (S1), 1 1B2 (S2), and 1 1B1 (S3) states in the vertical absorption spectrum, respectively. The S1 and S2 minimum geometries show out-of-plane deformations of the ring. The S3 electronic structure yields the global minimum on the S1 surface with an adiabatic excitation energy of merely 3.81 eV. It exhibits an asymmetric planar nuclear arrangement with one significantly elongated C-S bond. A constrained minimum energy path calculation connecting the S1 and S3 minima suggests that even low-lying vibrational levels of the S1 potential well can access the global minimum of the S1 surface. Nonradiative decay of the electronically excited singlet population to the electronic ground state via a close-by conical intersection will be fast. According to our work, this ring opening mechanism is most likely responsible for the lack of fluorescence in thiophene and the ultrafast decay of the S1 vibrational levels, as observed in time-resolved pump-probe femtosecond multiphoton ionization experiments. An alternative relaxation pathway leads from the S1 minimum via vibronic coupling to the S2 potential well followed by fast inter-system crossing to the T2 state. For an estimate of individual rate constants a quantum dynamical treatment will be required. The global minimum of the T1 surface has a chair-like nuclear conformation and corresponds to the T1 (1 3B2, piHOMO-->pi) electronic structure. Phosphorescence is weak here with a calculated radiative lifetime of 0.59 s. For the second potential well on the T1 surface with T3 (1 3B1, piHOMO-->sigma*) electronic structure, nonradiative processes are predicted to dominate the triplet decay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号