首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
The reduction of an overcrowded (E)-1,2-dibromodigermene, Bbt(Br)Ge=Ge(Br)Bbt (2) [Bbt = 2,6-bis[bis(trimethylsilyl)methyl]-4-[tris(trimethylsilyl)methyl]phenyl], with KC8 afforded a stable digermyne, BbtGe[triple bond]GeBbt (1). The Ge[triple bond]Ge triple-bond characters of 1 were revealed by the X-ray crystallographic analysis and spectroscopic studies (UV/vis and Raman spectra) together with theoretical calculations. The Ge[triple bond]Ge bond lengths of the two nonidentical molecules of 1 observed in the unit cell were shorter than that of the previously reported digermyne, Ar'Ge[triple bond]GeAr' (Ar' = 2,6-Dip2C6H3, Dip = 2,6-diisopropylphenyl).  相似文献   

2.
The first stable phosphabismuthene (R 1 --P=Bi--R 2 ) and stibabismuthene (R 1 --Sb=Bi--R 2 ) were successfully synthesized by taking advantage of efficient steric protection groups, 2,4,6-tris[bis(trimethylsilyl)methyl]phenyl (Tbt), 2,6-bis[bis(trimethylsilyl)-methyl]-4-[tris(trimethylsilyl)methyl]phenyl (Bbt), and 2,4,6-tri- t -butylphenyl (Mes*). Their spectroscopic properties and structural parameters were systematically compared with those of previously reported stable, homonuclear, doubly bonded systems, such as diphosphene, diarsene, distibene, and dibismuthene.  相似文献   

3.
Synthesis, Properties, and Structure of the Amine Adducts of Lithium Tris[bis(trimethylsilyl)methyl]zincates . Bis[bis(trimethylsilyl)methyl]zinc and the aliphatic amine 1,3,5-trimethyl-1,3,5-triazinane (tmta) yield in n-pentane the 1:1 adduct, the tmta molecule bonds as an unidentate ligand to the zinc atom. Bis[bis(trimethylsilyl)methyl]zinc · tmta crystallizes in the triclinic space group P1 with {a = 897.7(3); b = 1 114.4(4); c = 1 627.6(6) pm; α = 90.52(1); β = 103.26(1); γ = 102.09(1)°; Z = 2}. The central C2ZnN moiety displays a nearly T-shaped configuration with a CZnC angle of 157° and Zn? C bond lengths of 199 pm. The Zn? N distances of 239 pm are remarkably long and resemble the loose coordination of this amine; a nearly complete dissociation of this complex is also observed in benzene. The addition of aliphatic amines such as tmta or tmeda to an equimolar etheral solution of lithium bis(trimethylsilyl)methanide and bis[bis(trimethylsilyl)methyl]zinc leads to the formation of the amine adducts of lithium tris[bis(trimethylsilyl)methyl]zincate. Lithium tris[bis(trimethylsilyl)methyl]zincate · tmeda · 2 Et2O crystallizes in the orthorhombic space group Pbca with {a = 1 920.2(4); b = 2 243.7(5); c = 2 390.9(5) pm; Z = 8}. In the solid state solvent separated ions are observed; the lithium cation is distorted tetrahedrally surrounded by the two nitrogen atoms of the tmeda ligand and the oxygen atoms of both the diethylether molecules. The zinc atom is trigonal planar coordinated; the long Zn? C bonds with a value of 209 pm can be attributed to the steric and electrostatic repulsion of the three carbanionic bis(trimethylsilyl)methyl substituents.  相似文献   

4.
The redox behavior of kinetically stabilized dipnictenes, BbtE=EBbt [E = P, Sb, Bi; Bbt = 2,6-bis[bis(trimethylsilyl)methyl]-4-[tris(trimethylsilyl)methyl]phenyl], was systematically disclosed using cyclic voltammetry and theoretical calculations. It was found that they showed reversible one-electron redox couples in the reduction region. The anion radical species of the Bbt-substituted diphosphene and distibene were successfully synthesized by the reduction of the corresponding neutral dipnictenes (BbtP=PBbt and BbtSb=SbBbt). Their structures were reasonably characterized by ESR, UV-vis, and Raman spectroscopy, and the distibene anion radical was structurally characterized by X-ray crystallographic analysis.  相似文献   

5.
Stable silabenzenes ( 1a; R = Tbt, 1b; R = Bbt) were synthesized by taking advantage of extremely bulky and efficient steric protection groups, 2,4,6‐tris[bis(trimethylsilyl)methyl]phenyl (Tbt) and 2,6‐bis‐[bis(trimethylsilyl)methyl]‐4‐[tris(trimethylsilyl)methyl]phenyl (Bbt). The structure of Tbt‐substituted 1a was determined by X‐ray crystallographic analysis, which demonstrated the complete delocalization of the π‐electrons of the silabenzene ring. It was found that silabenzene 1a reacted with C–C and C–O multiple bond compounds to give the corresponding [4+2]‐cycloadducts via 1,4‐addition, while 1a underwent both 1,2‐ and 1,4‐additions by the reaction with methanol. Silabenzene 1a dimerized very gradually to afford its [4+2]‐dimer, although 1b showed no change under the same conditions. Photochemical reaction of 1a gave the corresponding silabenzvalene isomer instead of the Dewar silabenzene isomer.  相似文献   

6.
ABSTRACT

Various types of the O-protected derivatives and the 9-bromo analogs of methyl [2-(trimethylsilyl)ethyl 5-acetamido-3, 5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosid]onate were synthesized from methyl [2-(trimetnyl-silyl)ethyl 5-acetamido-4, 7-di-O-acetyl-3, 5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosid]onate (1) or methyl [2-(trimethylsilyl)ethyl 5-acetamido-8, 9-di-O-isopropylidene-D-glycero-α-D-galacto-2-nonulopyranosidlonate (3).  相似文献   

7.
2,2′-Bi-1H-imidazole, when protected with the [2-(trimethylsilyl)ethoxy]methyl (SEM) blocking group, on treatment with N-bromosuccinimide or N-chlorosuccinimide yields predominantly the monohalogenated derivatives 4a and 4b. The [2-(trimethylsilyl)ethoxy]methyl group is subsequently removed to yield pure mono-halo-2,2′-bi-H-imidazoles 2 .  相似文献   

8.
Upon irradiation of a benzene-d6 solution of 1,2,2,5-tetrakis[di-tert-butyl(methyl)silyl]-4,7-diaryl- 1,2,5-trisilabicyclo-[3.2.0]hepta-3,6-diene [1a: aryl = phenyl, b: aryl = 3,5-bis-(trimethylsilyl)phenyl], 1,4,7,7-tetrakis[di-tert-butyl-(methyl)silyl]-2,5-diaryl-1,4,7- trisilabicyclo[2.2.1]hepta-2,5-diene (2a,b) was formed via skeletal rearrangement.  相似文献   

9.
Abstract

Methyl [2-(trimethylsilyl)ethyl 5-acetamido-3,5-dideoxy-L-glycero-α-D-galacto-2-nonulopyranosid]onate (6) and its 8-epi-N-acetylneuraminic acid derivatives were synthesized from methyl [2-(trimethylsilyl)ethyl 5-acetamido-4,7-di-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulo-pyranosid]onate (1) and methyl [2-(trimethylsilyl)ethyl 5-acetamido-3,5-dideoxy-4,7-di-O-2-(trimethylsilyl)ethoxymethyl-D-glycero-α-D-galacto-2-nonulopyranosid]onate (2).  相似文献   

10.
Reaction of 2-[(dimethylamino)methyl]aniline with butyllithium, followed by conversion with trimethylsilyl, triphenylsilyl, triphenylgermyl, trimethylstannyl, or tri-n-butylstannyl chloride, gives the corresponding substituted aniline. These compounds were further deprotonated by butyllithium and reacted with germanium, tin, and lead dichlorides, respectively, in both stoichiometric ratios 2:1 and 1:1, providing the target homo- ([2-(Me(2)NCH(2))C(6)H(4)(YR(3))N](2)M) and heteroleptic ([2-(Me(2)NCH(2))C(6)H(4)(YR(3))N]MCl) germylenes and stannylenes, where M = Ge, Sn, Y = Si, Ge, and R = Me, Ph. Unlike all of these cases, the heteroleptic plumbylene can only be obtained with this reaction when the amide is substituted by a trimethylsilyl moiety. Anilines substituted by trimethyltin or tri-n-butyltin moieties gave transmetalation products after the second deprotonation by butyllithium. The trimethyltin-substituted stannylenes could likewise not be obtained by hexamethyldisilazane elimination of (trimethylstannyl)-2-[(dimethylamino)methyl]aniline with 0.5 mol equiv of either bis[bis(trimethylsilyl)amido]tin or {bis[bis(trimethylsilyl)amido]tin chloride}. Products of these reactions are heterocubanes with compositions {[2-(Me(2)NCH(2))C(6)H(4)N]Sn}(4) and [2-(Me(2)NCH(2))C(6)H(4)N](2)(μ(2)-SnMe(2))(2), respectively, and Me(4)Sn or Me(3)SnCl. The structures of trimethylsilyl- and triphenylgermyl-substituted germylenes, stannylenes, and plumbylenes, as well as a number of their precursors, in the crystalline state, were investigated by X-ray diffraction and NMR spectroscopy in solution. Density functional theory methods were used for evaluation of the structures of several compounds.  相似文献   

11.
Synthesis and Molecular Structure of (N,N′-Dimethyl-piperazine)lithium-(·-hydrido)(tert-butyl)bis[bis(trimethylsilyl)methyl]alanate with an Intramolecular Interaction between Lithium and C? H-σ-Bonds Syntheses and properties of the starting compounds bis[bromo-di(tert-butyl)alane] 3 , bis[dibromo-tert-butyl-alane] 4 , and (tert-butyl)bis[bis(trimethylsilyl)methyl]alane 5 are described. In the presence of 5 and the chelating amine N,N′-dimethylpiperazine lithium tert-butyl gives via μ-elimination isobutene and LiH, which is taken up by the starting alane 5 to give the title compound 6 . No attack of the strong base (lithium alkyl/amine) to the bis(trimethylsilyl) methyl substituent is observed as recently occured for the sterically more crowded tris[bis(trimethylsilyl)methyl]alane. Crystal structure of 6 shows a angled Li? H? Al bridge and a short intramolecular contact between Li and C? H-σ-bonds of a trimethylsilyl group.  相似文献   

12.
Synthesis of new imines and amines containing organosilicon groups   总被引:1,自引:0,他引:1  
The Peterson olefination reaction of terephthalaldehyde with tris(trimethylsilyl)methyl lithium, (Me3Si)3CLi, in THF at 0 °C gives 4-[2,2-bis(trimethylsilyl)ethenyl]benzaldehyde (1) and 4,4-bis[2,2-bis(trimethylsilyl)ethenyl]benzene (2). The new aldehyde (1) reacts with variety of amines in ethanol to afford the corresponding imines (3) containing vinylbis(trimethylsilyl) group. The newly synthesized imines (3) can be completely converted into amines containing vinylbis(trimethylsilyl) group with an excess amount of NaBH4. In the case of N-[4-(2,2-bis(trimethylsilyl)ethenyl)benzyl]-2,6-dimethylaniline LiAlH4 was used as a reducing agent in THF.  相似文献   

13.
Strontium and Barium Bis[N,N′-bis(trimethylsilyl)benzamidinates] from the Addition Reaction of the Alkaline Earth Metal Bis[bis(trimethylsilyl)amides] and Benzonitrile The reaction of strontium bis[bis trimethylsilyl)amide] with benzonitrile yields strontium bis[N,N′- bis(trimethylsilyl)benzamidinate] · 2THF, which crystallizes in the orthorhombic space group Pbcn (a = 1845.4(3); b = 131 1,3(2); c = 1838,(3) pm; Z = 4). During the similar reaction of barium bis[bis(trimethylsilyl)amide] with benzonitrile the benzonitrile adduct barium bis[N,N′-bis(trimethylsilyl)benzamidinate] · 2 THF · benzonitrile is formed. After the addition of diphenylacetylene to the strontium di(benzamidinate) in diglyme a clathrate of the composition strontium bis[N,N′-bis(trimethylsilyl)benzamidinate] · diglyme · diphenylacetylene could be isolated; the spectroscopic data as well as the X-ray structure (monoclinic, C2/c, a = 1492.2(2); b = 1539.1(2); c = 2337.8(3)pm; Z = 4) confirm the isolated appearance of the acetylene molecule without interaction to the metal center in solution and in the solid state, respectively.  相似文献   

14.
Contributions to the Chemistry of Transition Metal Alkyl Compounds. 64 [1] Preparation and Crystal Structure of Bis[N,N′ -bis(trimethylsilyl)-benzamidinato]dimethyltitanium Tetramethyltitanium reacts with excess N,N′-bis(trimethylsilyl)-benzamidine ( 1 ) to give bis[N,N′-bis(trimethylsilyl)benzamidinato]dimethyl-titanium ( 2 ) via protolysis. This compound was isolated and characterized by X-ray crystal structure analysis. In the crystal, 2 adopts an octahedral coordination with the methyl groups in cis-positions. The monomethyl complexes [PhC(NSiMe3)2]2M(Me)Cl ( 3 : M = Ti, 4 : M = Zr) have been prepared by treatment of the dichloro precursors with one equivalent of methyllithium.  相似文献   

15.
A new class of dithiostannanes and dithiogermanes have been prepared from 1,1'-binaphthyl-2,2'-dithiol and 3,3'-bis(trimethylsilyl)-1,1'-binaphtho-2,2'-dithiol. While reduction of 4-butyl-4-chloro-3,5-dithia-4-stanna-cyclohepta[2,1-a;3,4-a']dinaphthalene to the corresponding tin hydride was unsuccessful, 4-tert-butyl-3,5-dithia-4-germa-cyclohepta[2,1-a;3,4-a']dinaphthalene and 4-tert-butyl-2,6-bis(trimethylsilyl)-3,5-dithia-4-germa-cyclohepta[2,1-a;3,4-a']dinaphthalene were obtained by reduction of the parent germanium chlorides with NaBH(4) and LiBH(4), respectively. Kinetic constants for hydrogen transfer to a primary alkyl radical were measured for both germanium hydrides. Reduction of alpha-halo carbonyl compounds by these germanium hydrides occurs with moderate ee values (up to 42%), while hydrogermylation of methyl methacrylate occurs with low selectivity (<3/1) for the former hydride but high selectivity (>10/1) for the latter.  相似文献   

16.
Metal Derivatives of Molecular Compounds. IV Synthesis, Structure, and Reactivity of Lithium [Tris(trimethylsilyl)silyl]tellanide · DME Lithium tris(trimethylsilyl)silanide · 1,5 DME [3] and tellurium react in 1,2-dimethoxyethane to give colourless lithium [tris(trimethylsilyl)silyl]tellanide · DME ( 1 ). An X-ray structure determination {-150 · 3·C; P21/c; a = 1346.6(4); b = 1497.0(4); c = 1274.5(3) pm; β = 99.22(2)·; Z = 2 dimers; R = 0.030} shows the compound to be dimeric forming a planar Li? Te? Li? Te ring with two tris(trimethylsilyl)silyl substituents in a trans position. Three-coordinate tellurium is bound to the central silicon of the tris(trimethylsilyl)silyl group and to two lithium atoms; the two remaining sites of each four-coordinate lithium are occupied by the chelate ligand DME {Li? Te 278 and 284; Si? Te 250; Li? O 200 pm (2X); Te? Li? Te 105°; Li? Te? Li 75°; O? Li? O 84°}. The covalent radius of 154 pm as determined for the DME-complexed lithium in tellanide 1 is within the range of 155 ± 3 pm, also characteristic for similar compounds. In typical reactions of the tellanide 1 [tris(trimethylsilyl)silyl]tellane ( 2 ), methyl-[tris(trimethylsilyl)silyl]tellane ( 4 ) and bis[tris(trimethylsilyl)silyl]ditellane ( 5 ) are formed.  相似文献   

17.
The reaction of a bulky hexathioether, TbtS(o-Phen)S(o-Phen)SS(o-Phen)S(o-Phen)STbt (o-Phen = o-phenylene, Tbt = 2,4,6-tris[bis(trimethylsilyl)methyl]phenyl) (1), with 3 molar amounts of Pd(PPh3)4 afforded trinuclear palladium complex bridged by two benzenedithiolato ligands via a three-step palladium insertion reaction into one sulfur-sulfur and two carbon-sulfur bonds of 1.  相似文献   

18.
Abstract

Various types of the O-protected derivatives and the 9-bromo analogs of methyl [2-(trimethylsilyl)ethyl 5-acetamido-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosid]onate were synthesized from methyl [2-(trimethyl-silyl)ethyl 5-acetamido-4,7-di-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosid]onate (1) or methyl [2-(trimethylsilyl)ethyl 5-acetamido-8,9-di-O-isopropylidene-D-glycero-α-D-galacto-2-nonulopyranosid]onate (3).  相似文献   

19.
The reactions of overcrowded platinum(0) complexes [Pt{P(Ar)Me2}2] (Ar = 2,4,6-tris[bis(trimethylsilyl)methyl]phenyl (Tbt), 2,6-bis[bis- (trimethylsilyl)methyl]-4-[tris(trimethylsilyl)methyl]phenyl (Bbt)) with elemental sulfur and selenium resulted in the formation of the first platinum disulfur and diselenium complexes, [Pt(S2){P(Ar)Me2}2] (4a (Ar = Tbt), 4b (Ar = Bbt) and [Pt(Se2){P(Ar)Me2}2] (5a (Ar = Tbt), 5b (Ar = Bbt)) respectively. The x-ray crystallographic analyses of 4b and 5b showed a novel three-membered PtE2 (E = S, Se) ring structure with a square planar geometry around the platinum center. The oxidation of 4b and 5b with an equimolar amount of m-chloroperbenzoic acid or tert-butyl hydroperoxide in dichloromethane yielded the corresponding disulfur and diselenium monoxide complexes [Pt(E2O){P(Bbt)Me2}2] (6 (E = S), 7 (E = Se)). The further reactions of 6 and 7 with an excess of oxidants gave the corresponding O,S-coordinated thiosulfato complex [Pt(S2 O3){P(Bbt)Me2}2] (8) and the O,O-coordinated selenito complex [Pt(SeO3){P(Bbt)Me2}2] (11), respectively. The dynamic behavior in solution was revealed by the variable-temperature NMR spectroscopy for 4b, 5b, 8, and 11, which indicates the existence of the intramolecular CH···E (E = O, S, Se) interactions between the methine hydrogens of the o-bis(trimethylsilyl)methyl groups and the Pt-bonded chalcogen atoms.  相似文献   

20.
Although methanolysis of [α-(trimethylsilyl)benzyl]ferrocene (I) and [p-methyl-α-(trimethylsilyl)benzyl]ferrocene (II) in the presence of anhydrous ferric chloride merely gave α-ferrocenylbenzyl methyl ether (III) and p-methyl-α-ferrocenylbenzyl methyl ether (IV), respectively, acid-catalyzed methanolysis of (I) and (II) in the presence of an equimolar amount of (III) or (IV) afforded 1,2-diferrocenyl-l,2-diarylethanes. It is suggested that one electron oxidation of [α-(trimethylsilyl)benzyl]ferrocene by α-ferrocenylbenzyl cation generated from α-ferrocenylbenzyl methyl ether, and subsequent methanolysis of the resulting substituted ferricenium ion may occur to give the two species of α-ferrocenylbenzyl radical, which in turn undergo an approximately statistical coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号