首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When alkane thiols and disulfides coadsorb onto gold, they do not necessarily create a mixed monolayer. In particular, when thiols are terminated in groups capable of hydrogen bonding, they can altogether eliminate adsorption of disulfides. Such elimination can be observed directly by using fluorescently labeled disulfides and monitoring their adsorption (or lack of) by fluorescence microscopy. These experiments suggest a mechanism in which adsorption of thiols is facilitated by hydrogen bonding.  相似文献   

2.
具有核苷特异性的荧光猝灭技术在生物领域具有广泛应用.为了更好地理解这一过程的机理及其影响因素,研究了核苷对四甲基罗丹明(TMR)染料的分子间猝灭和在同一条寡聚核苷酸链中的分子内猝灭.与以前的研究结果一致,脱氧单磷酸鸟苷(dGMP)可以有效地猝灭TMR,而其他单磷酸腺苷对其的猝灭可以忽略.由斯特恩-沃尔默图获得TMR和dGMP的双分子猝灭常数为Ks=52.3L/mol.将TMR标记在寡聚核苷酸末端,可以观测到其荧光通过光致电子传递有效地被鸟苷猝灭,我们利用荧光相关光谱的方法测定了这一过程的猝灭速率常数.此外,所得的数据还显示鸟苷附近的碱基会对分子内的猝灭过程产生显著的位阻效应.这些结果将有助于设计寡聚核苷酸荧光探针和理解G猝灭过程.  相似文献   

3.
Nucleotide-specific fluorescence quenching in fluorescently labeled DNA has many applications in biotechnology. We have studied the inter- and intra-molecular quenching of tetramethylrhodamine (TMR) by nucleotides to better understand their quenching mechanism and influencing factors. In agreement with previous work, dGMP can effectively quench TMR, while the quenching of TMR by other nucleotides is negligible. The Stern-Volmer plot between TMR and dGMP delivers a bimolecular quenching constant of K s = 52.3 M−1. The fluorescence of TMR in labeled oligonucleotides decreases efficiently through photoinduced electron transfer by guanosine. The quenching rate constant between TMR and guanosine was measured using fluorescence correlation spectroscopy (FCS). In addition, our data show that the steric hindrance by bases around guanosine has significant effect on the G-quenching. The availability of these data should be useful in designing fluorescent oligonucleotides and understanding the G-quenching process.  相似文献   

4.
Silver island films (SIFs) were deposited on glass substrates to serve as supports. T-Lymphocytic (PM1) cell lines were labeled by Alexa Fluor 680-dextran conjugates on the membranes or by YOYO in the nuclei. The fluorescence images of the cell lines were recorded in the emission intensity and lifetime using scanning confocal microscopy. The fluorescence signals by the fluorophores bound on the cell membranes were enhanced significantly by SIF supports as compared with those on the glass. In addition to the increase in the intensity, there was a dramatic shortening of the emission lifetime. In contrast to the Alexa Fluor 680 fluorophores on the membranes, the YOYO fluorophores intercalated in the cell nuclei were not influenced significantly by the silver islands. This result can be interpreted by an effect of the distance on coupling between the fluorophores and metal particles: the fluorophores on the cell membranes are localized within, but the fluorophores in the cell nuclei are beyond the region of metal-enhanced fluorescence. Thus, the metal supports can be used to improve the detection sensitivity for target molecules on cell surfaces when they are fluorescently labeled.  相似文献   

5.
Li YT  Liu HS  Lin HP  Chen SH 《Electrophoresis》2005,26(24):4743-4750
Colloidal gold nanoparticles were used to develop a simple microfluidics-based bioassay that is able to recognize and detect specific DNA sequences via conformational change-induced fluorescence quenching. In this method, a self-assembled monolayer of gold nanoparticles was fabricated on the channel wall of a microfluidic chip, and DNA probes were bonded to the monolayer via thiol groups at one end and a fluorophore dye was attached to the other end of the probe. The created construct is spontaneously assembled into a constrained arch-like conformation on the particle surface and, under which, the fluorescence of fluorophores is quenched by gold nanoparticles. Hybridization of target DNAs results in a conformational change of the construct and then restores the fluorescence, which serves as a sensing method for the target genes. The nanocomposite constructed on the glass surface was characterized by UV absorbance measurement and the quenching efficiency for different fluorophores was evaluated by Stern-Volmer studies. The applicability of proposed assay was first demonstrated by the use of a pair of synthesized complementary and noncomplementary DNA sequences. The method was further applied for the detection of the PCR product of dengue virus with the use of enterovirus as the negative control, and results indicate that the assay is specific for the target gene. Moreover, using this approach, dehybridization, hybridization, and detection of the target genes can be performed in situ on the same microfluidic channel. Thus, this method could be regarded as one-pot reaction and it holds great promises for clinical diagnostics.  相似文献   

6.
Fluorescence imaging of living cells depends on an efficient and specific method for labeling the target cellular protein with fluorophores. Here we show that Sfp phosphopantetheinyl transferase-catalyzed protein labeling is suitable for fluorescence imaging of membrane proteins that spend at least part of their membrane trafficking cycle at the cell surface. In this study, transferrin receptor 1 (TfR1) was fused to peptide carrier protein (PCP), and the TfR1-PCP fusion protein was specifically labeled with fluorophore Alexa 488 by Sfp. The trafficking of transferrin-TfR1-PCP complex during the process of transferrin-mediated iron uptake was imaged by fluorescence resonance energy transfer between the fluorescently labeled transferrin ligand and TfR1 receptor. We thus demonstrated that Sfp-catalyzed small molecule labeling of the PCP tag represents a practical and efficient tool for molecular imaging studies in living cells.  相似文献   

7.
Fabrication, characterization, and application of poly(phenylene ethynylene) (PPE)/silica composite particles are described. PPE is a class of conjugated polymers, which has been used for various sensory materials. However, its hydrophobic nature makes its application difficult in the aqueous phase, especially for biological substance detection. In this report, we utilized non-aqueous soluble PPE, 15 nm of colloidal silica particles, and aminosilane to fabricate a biosensory platform. The resulting composite showed high aqueous compatibility, large surface area, high quantum efficiency, and versatile chemical modification including oligonucleotide coupling. By monitoring the fluorescence quenching of PPE, we could detect a quencher-labeled target oligonucleotide specifically. Stern-Volmer (SV) analysis showed different accessibility of fluorophores (PPE) to a quencher labeled target oligonucleotide. The accessibility of fluorophores and SV constant are determined to be 0.54 and 4.2 x 10(7)M(-1), respectively, from a modified SV plot. This method will broaden the capability of conjugated polymers for the sensitive detection of biological substances.  相似文献   

8.
Fluorescence quenching of 9,10-dimethyl-3, 4,6,7,9,10-hexahydro-1,8(2H,5H) acridinedione (ADD) dye by N,N-dimethylaniline (DMA) in SDS and CTAB were studied by steady state fluorescence and time resolved techniques. The Stern-Volmer plots for the quenching of ADD by DMA is found to be linear and the Stern-Volmer constant K(SV) depends on the micellar concentration. The fluorescence quenching analysis reveals the binding of DMA with the micelles. The perturbation of the probe on the position of DMA molecule in micelle is inferred in the present investigation. The ADD fluorophore drives the DMA molecule into the non-polar region (core) of the micelle whereas other fluorophores like pyrene and rhodamine6G do not affect the position of DMA. In this report, the importance of the nature of fluorophores in determining the position and association of the quencher molecules in the aggregated systems is being discussed.  相似文献   

9.
The interaction between the fluorescently labeled redox protein, azurin, and a thin gold film is characterized using single-molecule fluorescence intensity and lifetime measurements. Fluorescence quenching starts at distances below 2.3 nm from the gold surface. At shorter distances the quantum yield may decrease down to fourfold for direct attachment of the protein to bare gold. Outside of the quenching range, up to fivefold enhancement of the fluorescence is observed on average with increasing roughness of the gold layer. Fluorescence-detected redox activity of individual azurin molecules, with a lifetime switching ratio of 0.4, is demonstrated for the first time close to a gold surface.  相似文献   

10.
We labeled hyaluronan (HA) with two fluorophores, fluorescein amine and rhodamine B amine. These two fluorophores are suitable for a fluorescence (Foerster) resonance energy transfer (FRET) which results in a fluorescein quenching and an enhanced rhodamine emission. Such labeled HA (HA-FRET) is a potential sensor for HA degradation. We studied fluorescence properties of HA-FRET in the absence and presence of hyaluronidase enzyme (HA-ase). The time-resolved fluorescence measurements indicate more than 50% of FRET in the absence of HA-ase. In the presence of HA-ase FRET decreases with time, and relative fluorescence intensities of fluorescein and rhodamine shifts to fluorescein indicating a release of FRET. The kinetics of the digestion process of HA by HA-ase depends on the concentration of the enzyme. We demonstrate that simultaneous measurements of green and red emission of HA-FRET can be used in ratio metric detection of the HA-ase presence and activity. This in turn, can be utilized for the construction of a robust but reliable HA-ase sensing device.  相似文献   

11.
二氧化硅稳定的金纳米颗粒(Au-SiO2)与罗丹明B之间发生表面能量转移,使罗丹明B荧光猝灭。 金纳米颗粒对罗丹明B的Stern-Volmer猝灭常数为4.3×103 L/mol。 当荧光猝灭的混合体系中加入巯基化合物时,巯基化合物与金纳米颗粒发生强相互作用阻断罗丹明B-金纳米颗粒之间的能量转移,罗丹明B荧光恢复。 基于罗丹明B-Au-SiO2体系对巯基化合物的单一响应,建立了一种简单快速检测巯基化合物的方法;并且由于二氧化硅对金纳米颗粒的稳定作用,金纳米颗粒成为一种可以回收利用的检测探针。  相似文献   

12.
Labeling of proteins with fluorescent dyes offers powerful means for monitoring protein interactions in vitro and in live cells. Only a few techniques for noncovalent fluorescence labeling with well-defined localization of the attached dye are currently available. Here, we present an efficient method for site-specific and stable noncovalent fluorescence labeling of histidine-tagged proteins. Different fluorophores were conjugated to a chemical recognition unit bearing three NTA moieties (tris-NTA). In contrast to the transient binding of conventional mono-NTA, the multivalent interaction of tris-NTA conjugated fluorophores with oligohistidine-tagged proteins resulted in complex lifetimes of more than an hour. The high selectivity of tris-NTA toward cumulated histidines enabled selective labeling of proteins in cell lysates and on the surface of live cells. Fluorescence labeling by tris-NTA conjugates was applied for the analysis of a ternary protein complex in solution and on surfaces. Formation of the complex and its stoichiometry was studied by analytical size exclusion chromatography and fluorescence quenching. The individual interactions were dissected on solid supports by using simultaneous mass-sensitive and multicolor fluorescence detection. Using these techniques, formation of a 1:1:1 stoichiometry by independent interactions of the receptor subunits with the ligand was shown. The incorporation of transition metal ions into the labeled proteins upon labeling with tris-NTA fluorophore conjugates provided an additional sensitive spectroscopic reporter for detecting and monitoring protein-protein interactions in real time. A broad application of these fluorescence conjugates for protein interaction analysis can be envisaged.  相似文献   

13.
Li H  Zhai J  Sun X 《The Analyst》2011,136(10):2040-2043
In this Communication, we report water-soluble nano-C(60) in the first use as an effective fluorescent sensing platform for the highly sensitive and selective detection of Ag(+). The general concept used in this approach is based on a fluorescently labeled single-stranded DNA (ssDNA) probe that adsorbs on nano-C(60), leading to substantial dye fluorescence quenching; however, in the presence of Ag(+), C-Ag(+)-C coordination induces the probe to fold into a hairpin structure, which does not adsorb on nano-C(60) and thus retains the dye fluorescence. This sensing system exhibits a detection limit as low as 1 nM and has a high selectivity against other metal ions. Finally and most importantly, we demonstrate its performance in real sample analysis.  相似文献   

14.
Polyion complexes (PICs) of anionic block copolymer poly(ethylene oxide)-block-poly(sodium methacrylate), PEO-block-(PMA)Na, and a cationic homopolymer, poly((methacryloyloxyethyl)trimethylammonium chloride), PMOTAC, have been studied by fluorescence spectroscopy. Pyrene and naphthalene singly labeled block copolymers were used with two different sodium methacrylate block lengths. The chain exchange between the stoichiometric PICs at the equilibrium state and the formation of the negatively charged PICs on addition of excess PEO-block-(PMA)Na to stoichiometric PIC solution were of interest. The chain exchange between the stoichiometric complexes was observed to occur via two mechanisms. The faster chain exchange occurs via insertion and expulsion of single chains, while merging and splitting of the PIC particles is behind the slower chain exchange event. Incorporation of an excess amount of the guest polyion into a stoichiometric PIC took place on further addition of the PEO-block-(PMA)Na. The same mechanisms were recognized in the overcharging process of the PICs as in the chain exchange between the stoichiometric PICs.  相似文献   

15.
With a simple optical method, based on UV-vis absorption spectra on glass slides, it is possible to predict the composition of self-assembled monolayers of mixed thiols, grafted on monolayers of silver nanoparticles. Glass slides are modified with the layer-by-layer technique, first forming a monolayer of mercaptopropyltrimethoxysilane, then grafting a monolayer of silver nanoparticles on it. These surfaces are further coated by single or mixed thiol monolayers, by dipping the slides in toluene solutions of the chosen thiols. Exchange constants are calculated for the competitive deposition between the colorless 1-dodecanethiol or PEG5000 thiol and BDP-SH, with the latter being a thiol-bearing molecule containing the strongly absorbing BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) moiety, synthesized on purpose. The constants are calculated by determining the fraction of BDP-SH deposited on the surface from a solution with a given molar fraction, directly measuring the absorption spectra of BDP-SH on the slides. Then, the exchange constant for the competitive deposition between 1-dodecanethiol and PEG5000 thiol is calculated by combining their exchange constants with BDP-SH. This allows to predict the fraction of the two colorless thiols coating the silver nanoparticles slides obtained from a toluene solution with a given molar fraction, for example, of PEG5000 thiol. The correctness of the calculated surface fraction is verified by studying the coating competition between 1-dodecanethiol and a PEG5000 thiol remotely modified with a strongly absorbing fluorescein fragment.  相似文献   

16.
A set of new azide‐ and alkyne‐bearing lepidinium‐based fluorophores were synthesized for bioorthogonal labeling schemes. These fluorescent dyes all show large Stokes‐shifts with emission maxima in the near‐infrared (NIR) region of the electromagnetic spectrum. The applicability of these dyes in the construction of energy‐transfer systems was tested using one of these new fluorescent tags and daunomycin (Dau), an anticancer drug with fluorescent features. These daunomycin conjugates are the very first examples of fluorescently modulated constructs of this anticancer agent. The dually labeled architectures proved that the applied fluorescent dye can be utilized as an efficient quencher for daunomycin. Enzymatic cleavage of a dually labeled enzyme substrate resulted in full recovery of the fluorescence of daunomycin. Such fluorescently modulated Dau conjugates can provide useful information for the mechanism of action of Dau‐regulated cell death processes.  相似文献   

17.
Tuning the luminescence intensity of fluorophores using nanoparticles has shown great potential for the detection of inorganic metal ions, viruses, and proteins. The enhancement or quenching of a dye's fluorescence intensity is strongly dependent on the spatial separation of the dye from the nanoparticle surface. To extend luminescence probing from the solution platform to the solid-state platform, we explored and performed dye quenching assessment using an array format in this study. We report the distance-dependent fluorescence behavior of Au-DNA conjugates prepared by equilibrating phosphine-stabilized gold nanoparticles (AuNPs) of 10-nm size with the designed spacer ds-DNA consisting of thiol-modified target and Cy3-labeled complementary probe of different lengths (5-20 nm). The Cy3-labeled products were immobilized onto MPTMS (3-mercaptopropyltrimethoxysilane)-modified glass substrates and then excited with a 532-nm laser source. Quenching efficiency of AuNPs with increasing Au-to-dye distance was assessed using ligand exchange of the thiolated oligonucleotide by 2-mercaptoethanol (ME) to obtain free Cy3-DNA probe, thus eliminating nanoparticle effect on the dye's luminescence intensity. Effective exchange, revealed by UV-vis absorption and fluorescence profiles, was achieved in a few minutes. It was observed that fluorescence quenching of Au-DNA-Cy3 assessed using the array format was consistent with the result in solution phase for the conjugates with up to 10-nm Au-to-Cy3 separation distance.  相似文献   

18.
In this review, we summarize the number of scientific publications in the field of FP/FA sensor in recent five years, and introduce the recent progress of FP/FA sensor based on nanomaterial. The various analytical applications of FP/FA sensor based on nanomaterial are discussed. We also provide perspectives on the current challenges and future prospects in the promising field.  相似文献   

19.
《中国化学快报》2019,30(9):1575-1580
As a promising signaling transduction approach, fluorescence polarization (FP)/fluorescence anisotropy (FA), provides a powerful quantitative tool for the rotational motion of fluorescently labeled molecules in chemical or biological homogeneous systems. Unlike fluorescence intensity, FP/FA is almost independent the concentration or quantum of fluorophores, but they are highly dependent on the size or molecular weight of the molecules or materials attached to fluorophores. Recently, significant progress in FP/FA was made, due to the introduction of some nanomaterials as FP/FA enhancers. The detection sensitivity is thus greatly improved by using nanomaterials as FP/FA enhancers, and nanomaterial-based FP/FA is currently used successfully in immunoassay, and analysis of protein, nucleic acid, small molecule and metal ion. Nanomaterial-based FP/FA provides a new kind of strategy to design fluorescent sensors and establishes innovative analytical methods. In this review, we summarize the scientific publications in the field of FP/FA sensor in recent five years, and first introduce the recent progress of FP/FA sensor based on nanomaterial. Subsequently, the various analytical applications of FP/FA based on nanomaterial are discussed. Finally, we provide perspectives on the current challenges and future prospects in this promising field.  相似文献   

20.
The exchange of subunits between oligomer protein particles depends upon a cycle of dissociations and associations. To examine the dynamics of these cycles we have employed two methods based on the transfer of excitation energy between fluorochromes attached to different subunits of protein oligomers, at various temperatures and pressures. In the heterotransfer method, identical solutions independently labeled with two different fluorophores, donor D and acceptor A, are mixed. The fluorescence spectrum permits the determination of the subunit exchange by the increase in A and decrease in D fluorescence as mixed AD oligomers are formed. In the homotransfer method the aggregates are labeled with fluorescein to the extent that, ideally, each subunit carries a fluorophore. The emission is strongly depolarized because sufficiently often it takes place after a transfer to a fluorophore oriented differently from the one originally excited. Both dissociation and subunit exchange with unlabeled material result in an increase in polarization and can be independently determined by the homotransfer method. Both homo- and heterotransfer have been employed in the study of the effect of temperature on the stability of the aggregates and the relation between the rate of dissociation and the rate of exchange when dissociation of oligomers is induced by hydrostatic pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号