首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that if k is an infinite field, then there exists a subspace W?kN of dimension |k|?0, such that no nonzero member of W has infinitely many zeros. This generalizes a result from a paper by Bergman and Nahlus, and partly answers another question from the same paper.  相似文献   

2.
Let K be the algebraic closure of a finite field Fq of odd characteristic p. For a positive integer m prime to p, let F=K(x,y) be the transcendence degree 1 function field defined by yq+y=xm+x?m. Let t=xm(q?1) and H=K(t). The extension F|H is a non-Galois extension. Let K be the Galois closure of F with respect to H. By Stichtenoth [20], K has genus g(K)=(qm?1)(q?1), p-rank (Hasse–Witt invariant) γ(K)=(q?1)2 and a K-automorphism group of order at least 2q2m(q?1). In this paper we prove that this subgroup is the full K-automorphism group of K; more precisely AutK(K)=Δ?D where Δ is an elementary abelian p-group of order q2 and D has an index 2 cyclic subgroup of order m(q?1). In particular, m|AutK(K)|>g(K)3/2, and if K is ordinary (i.e. g(K)=γ(K)) then |AutK(K)|>g3/2. On the other hand, if G is a solvable subgroup of the K-automorphism group of an ordinary, transcendence degree 1 function field L of genus g(L)2 defined over K, then |AutK(K)|34(g(L)+1)3/2<682g(L)3/2; see [15]. This shows that K hits this bound up to the constant 682.Since AutK(K) has several subgroups, the fixed subfield FN of such a subgroup N may happen to have many automorphisms provided that the normalizer of N in AutK(K) is large enough. This possibility is worked out for subgroups of Δ.  相似文献   

3.
We study solutions of the focusing energy-critical nonlinear heat equation ut=Δu?|u|2u in R4. We show that solutions emanating from initial data with energy and H˙1-norm below those of the stationary solution W are global and decay to zero, via the “concentration-compactness plus rigidity” strategy of Kenig–Merle [33], [34]. First, global such solutions are shown to dissipate to zero, using a refinement of the small data theory and the L2-dissipation relation. Finite-time blow-up is then ruled out using the backwards-uniqueness of Escauriaza–Seregin–Sverak [17], [18] in an argument similar to that of Kenig–Koch [32] for the Navier–Stokes equations.  相似文献   

4.
5.
6.
7.
The purpose of this article is to compute the mod 2 cohomology of Γq(K), the mapping class group of the Klein bottle with q marked points. We provide a concrete construction of Eilenberg–MacLane spaces Xq=K(Γq(K),1) and fiber bundles Fq(K)/ΣqXqB(Z2×O(2)), where Fq(K)/Σq denotes the configuration space of unordered q-tuples of distinct points in K and B(Z2×O(2)) is the classifying space of the group Z2×O(2). Moreover, we show the mod 2 Serre spectral sequence of the bundle above collapses.  相似文献   

8.
9.
We study the partial regularity problem of the incompressible Navier–Stokes equations. A reverse Hölder inequality of velocity gradient with increasing support is obtained under the condition that a scaled functional corresponding the local kinetic energy is uniformly bounded. As an application, we give a new bound for the Hausdorff dimension and the Minkowski dimension of singular set when weak solutions v belong to L(0,T;L3,w(R3)) where L3,w(R3) denotes the standard weak Lebesgue space.  相似文献   

10.
We consider the space-time behavior of the two dimensional Navier–Stokes flow. Introducing some qualitative structure of initial data, we succeed to derive the first order asymptotic expansion of the Navier–Stokes flow without moment condition on initial data in L1(R2)Lσ2(R2). Moreover, we characterize the necessary and sufficient condition for the rapid energy decay 6u(t)62=o(t?1) as t motivated by Miyakawa–Schonbek [21]. By weighted estimated in Hardy spaces, we discuss the possibility of the second order asymptotic expansion of the Navier–Stokes flow assuming the first order moment condition on initial data. Moreover, observing that the Navier–Stokes flow u(t) lies in the Hardy space H1(R2) for t>0, we consider the asymptotic expansions in terms of Hardy-norm. Finally we consider the rapid time decay 6u(t)62=o(t?32) as t with cyclic symmetry introduced by Brandolese [2].  相似文献   

11.
In this paper we focus our attention on the following nonlinear fractional Schrödinger equation with magnetic field
ε2s(?Δ)A/εsu+V(x)u=f(|u|2)u in RN,
where ε>0 is a parameter, s(0,1), N3, (?Δ)As is the fractional magnetic Laplacian, V:RNR and A:RNRN are continuous potentials and f:RNR is a subcritical nonlinearity. By applying variational methods and Ljusternick–Schnirelmann theory, we prove existence and multiplicity of solutions for ε small.  相似文献   

12.
A sharp version of the Balian–Low theorem is proven for the generators of finitely generated shift-invariant spaces. If generators {fk}k=1K?L2(Rd) are translated along a lattice to form a frame or Riesz basis for a shift-invariant space V, and if V has extra invariance by a suitable finer lattice, then one of the generators fk must satisfy Rd|x||fk(x)|2dx=, namely, fk??H1/2(Rd). Similar results are proven for frames of translates that are not Riesz bases without the assumption of extra lattice invariance. The best previously existing results in the literature give a notably weaker conclusion using the Sobolev space Hd/2+?(Rd); our results provide an absolutely sharp improvement with H1/2(Rd). Our results are sharp in the sense that H1/2(Rd) cannot be replaced by Hs(Rd) for any s<1/2.  相似文献   

13.
14.
For a martingale M starting at x with final variance σ2, and an interval (a,b), let Δ=b?aσ be the normalized length of the interval and let δ=|x?a|σ be the normalized distance from the initial point to the lower endpoint of the interval. The expected number of upcrossings of (a,b) by M is at most 1+δ2?δ2Δ if Δ21+δ2 and at most 11+(Δ+δ)2 otherwise. Both bounds are sharp, attained by Standard Brownian Motion stopped at appropriate stopping times. Both bounds also attain the Doob upper bound on the expected number of upcrossings of (a,b) for submartingales with the corresponding final distribution. Each of these two bounds is at most σ2(b?a), with equality in the first bound for δ=0. The upper bound σ2 on the length covered by M during upcrossings of an interval restricts the possible variability of a martingale in terms of its final variance. This is in the same spirit as the Dubins & Schwarz sharp upper bound σ on the expected maximum of M above x, the Dubins & Schwarz sharp upper bound σ2 on the expected maximal distance of M from x, and the Dubins, Gilat & Meilijson sharp upper bound σ3 on the expected diameter of M.  相似文献   

15.
This paper is concerned with the global existence and large time behavior of solutions to Cauchy problem for a P1-approximation radiation hydrodynamics model. The global-in-time existence result is established in the small perturbation framework around a stable radiative equilibrium states in Sobolev space H4(R3). Moreover, when the initial perturbation is also bounded in L1(R3), the L2-decay rates of the solution and its derivatives are achieved accordingly. The proofs are based on the Littlewood–Paley decomposition techniques and elaborate energy estimates in different frequency regimes.  相似文献   

16.
17.
18.
19.
The vertices of Kneser graph K(n,k) are the subsets of {1,2,,n} of cardinality k, two vertices are adjacent if and only if they are disjoint. The square G2 of a graph G is defined on the vertex set of G with two vertices adjacent if their distance in G is at most 2. Z. Füredi, in 2002, proposed the problem of determining the chromatic number of the square of the Kneser graph. The first non-trivial problem arises when n=2k+1. It is believed that χ(K2(2k+1,k))=2k+c where c is a constant, and yet the problem remains open. The best known upper bounds are by Kim and Park: 8k3+203 for 1k3 (Kim and Park, 2014) and 32k15+32 for k7 (Kim and Park, 2016). In this paper, we develop a new approach to this coloring problem by employing graph homomorphisms, cartesian products of graphs, and linear congruences integrated with combinatorial arguments. These lead to χ(K2(2k+1,k))5k2+c, where c is a constant in {52,92,5,6}, depending on k2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号