首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Let F be an infinite field. The primeness property for central polynomials of Mn(F) was established by A. Regev, i.e., if the product of two polynomials in distinct variables is central then each factor is also central. In this paper we consider the analogous property for Mn(F) and determine, within the elementary gradings with commutative neutral component, the ones that satisfy this property, namely the crossed product gradings. Next we consider Mn(R), where R admits a regular grading, with a grading such that Mn(F) is a homogeneous subalgebra and provide sufficient conditions – satisfied by Mn(E) with the trivial grading – to prove that Mn(R) has the primeness property if Mn(F) does. We also prove that the algebras Ma,b(E) satisfy this property for ordinary central polynomials. Hence we conclude that, over a field of characteristic zero, every verbally prime algebra has the primeness property.  相似文献   

3.
If a vertex operator algebra V=n=0Vn satisfies dimV0=1, V1=0, then V2 has a commutative (nonassociative) algebra structure called Griess algebra. One of the typical examples of commutative (nonassociative) algebras is a Jordan algebra. For example, the set Symd(C) of symmetric matrices of degree d becomes a Jordan algebra. On the other hand, in the theory of vertex operator algebras, central charges influence the properties of vertex operator algebras. In this paper, we construct vertex operator algebras with central charge c and its Griess algebra is isomorphic to Symd(C) for any complex number c and a positive integer d.  相似文献   

4.
Denote the sum of element orders in a finite group G by ψ(G) and let Cn denote the cyclic group of order n. Suppose that G is a non-cyclic finite group of order n and q is the least prime divisor of n. We proved that ψ(G)711ψ(Cn) and ψ(G)<1q?1ψ(Cn). The first result is best possible, since for each n=4k, k odd, there exists a group G of order n satisfying ψ(G)=711ψ(Cn) and the second result implies that if G is of odd order, then ψ(G)<12ψ(Cn). Our results improve the inequality ψ(G)<ψ(Cn) obtained by H. Amiri, S.M. Jafarian Amiri and I.M. Isaacs in 2009, as well as other results obtained by S.M. Jafarian Amiri and M. Amiri in 2014 and by R. Shen, G. Chen and C. Wu in 2015. Furthermore, we obtained some ψ(G)-based sufficient conditions for the solvability of G.  相似文献   

5.
Motivated by Weyl algebra analogues of the Jacobian conjecture and the tame generators problem, we prove quantum versions of these problems for a family of analogues to the Weyl algebras. In particular, our results cover the Weyl–Hayashi algebras and tensor powers of a quantization of the first Weyl algebra which arises as a primitive factor algebra of Uq+(so5).  相似文献   

6.
7.
8.
9.
We classify all Hopf algebras which factor through two Taft algebras Tn2(q) and respectively Tm2(q). To start with, all possible matched pairs between the two Taft algebras are described: if qqn?1 then the matched pairs are in bijection with the group of d-th roots of unity in k, where d=(m,n) while if q=qn?1 then besides the matched pairs above we obtain an additional family of matched pairs indexed by k?. The corresponding bicrossed products (double cross product in Majid's terminology) are explicitly described by generators and relations and classified. As a consequence of our approach, we are able to compute the number of isomorphism types of these bicrossed products as well as to describe their automorphism groups.  相似文献   

10.
We describe the space of central extensions of the associative algebra Ψn of formal pseudo-differential symbols in n1 independent variables using Hochschild (co)homology groups: we prove that the first Hochschild (co)homology group HH1(Ψn) is 2n-dimensional and we use this fact to calculate the first Lie (co)homology group HLie1(Ψn) of Ψn equipped with the Lie bracket induced by its associative algebra structure. As an application, we use our calculations to provide examples of infinite-dimensional quadratic symplectic Lie algebras.  相似文献   

11.
The generalized Ramsey number R(G1,G2) is the smallest positive integer N such that any red–blue coloring of the edges of the complete graph KN either contains a red copy of G1 or a blue copy of G2. Let Cm denote a cycle of length m and Wn denote a wheel with n+1 vertices. In 2014, Zhang, Zhang and Chen determined many of the Ramsey numbers R(C2k+1,Wn) of odd cycles versus larger wheels, leaving open the particular case where n=2j is even and k<j<3k2. They conjectured that for these values of j and k, R(C2k+1,W2j)=4j+1. In 2015, Sanhueza-Matamala confirmed this conjecture asymptotically, showing that R(C2k+1,W2j)4j+334. In this paper, we prove the conjecture of Zhang, Zhang and Chen for almost all of the remaining cases. In particular, we prove that R(C2k+1,W2j)=4j+1 if j?k251, k<j<3k2, and j212299.  相似文献   

12.
13.
Let V be a module with S=End(V). V is called a quasi-Baer module if for each ideal J of S, rV(J)=eV for some e2=eS. On the other hand, V is called a Rickart module if for each ?S, Ker(?)=eV for some e2=eS. For a module N, the quasi-Baer module hull qB(N) (resp., the Rickart module hull Ric(N)) of N, if it exists, is the smallest quasi-Baer (resp., Rickart) overmodule, in a fixed injective hull E(N) of N. In this paper, we initiate the study of quasi-Baer and Rickart module hulls. When a ring R is semiprime and ideal intrinsic over its center, it is shown that every finitely generated projective R-module has a quasi-Baer hull. Let R be a Dedekind domain with F its field of fractions and let {Ki|iΛ} be any set of R-submodules of FR. For an R-module MR with AnnR(M)0, we show that MR(?iΛKi)R has a quasi-Baer module hull if and only if MR is semisimple. This quasi-Baer hull is explicitly described. An example such that MR(?iΛKi)R has no Rickart module hull is constructed. If N is a module over a Dedekind domain for which N/t(N) is projective and AnnR(t(N))0, where t(N) is the torsion submodule of N, we show that the quasi-Baer hull qB(N) of N exists if and only if t(N) is semisimple. We prove that the Rickart module hull also exists for such modules N. Furthermore, we provide explicit constructions of qB(N) and Ric(N) and show that in this situation these two hulls coincide. Among applications, it is shown that if N is a finitely generated module over a Dedekind domain, then N is quasi-Baer if and only if N is Rickart if and only if N is Baer if and only if N is semisimple or torsion-free. For a direct sum NR of finitely generated modules, where R is a Dedekind domain, we show that N is quasi-Baer if and only if N is Rickart if and only if N is semisimple or torsion-free. Examples exhibiting differences between the notions of a Baer hull, a quasi-Baer hull, and a Rickart hull of a module are presented. Various explicit examples illustrating our results are constructed.  相似文献   

14.
In this paper we define odd dimensional unitary groups U2n+1(R,Δ). These groups contain as special cases the odd dimensional general linear groups GL2n+1(R) where R is any ring, the odd dimensional orthogonal and symplectic groups O2n+1(R) and Sp2n+1(R) where R is any commutative ring and further the first author's even dimensional unitary groups U2n(R,Λ) where (R,Λ) is any form ring. We classify the E-normal subgroups of the groups U2n+1(R,Δ) (i.e. the subgroups which are normalized by the elementary subgroup EU2n+1(R,Δ)), under the condition that R is either a semilocal or quasifinite ring with involution and n3. Further we investigate the action of U2n+1(R,Δ) by conjugation on the set of all E-normal subgroups.  相似文献   

15.
《Discrete Mathematics》2006,306(19-20):2438-2449
  相似文献   

16.
Matrices A and B in Mn(C) are said to be mutually orthogonal if AB?+BA?=0, where ? denotes the conjugate transpose. We study cardinalities of certain R-linearly independent families of matrices arising from matrix embeddings of a division algebra of index m with center a number field Z, satisfying the property that matrices from different families are mutually orthogonal. The question is of importance in the context of coding for certain wireless channels, where the cardinalities of such sets is connected to the maximum code rate consistent with low decoding complexity. It follows from our results that the maximum code rate for the codes we consider is severely limited.  相似文献   

17.
18.
19.
20.
Let G be a graph of order n3. An even squared Hamiltonian cycle (ESHC) of G is a Hamiltonian cycle C=v1v2vnv1 of G with chords vivi+3 for all 1in (where vn+j=vj for j1). When n is even, an ESHC contains all bipartite 2-regular graphs of order n. We prove that there is a positive integer N such that for every graph G of even order nN, if the minimum degree is δ(G)n2+92, then G contains an ESHC. We show that the condition of n being even cannot be dropped and the constant 92 cannot be replaced by 1. Our results can be easily extended to even kth powered Hamiltonian cycles for all k2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号