首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the chemo‐ and regioselective hydrogenolysis of the C?O bonds in di‐ortho‐substituted diaryl ethers under the catalysis of a supported nickel catalyst. The catalyst comprises heterogeneous nickel particles supported on activated carbon and furnishes arenes and phenols in high yields without hydrogenation. The high thermal stability of the embedded metal particles allows C?O bond cleavage to occur in highly substituted diaryl ether units akin to those in lignin. Preliminary mechanistic experiments show that this catalyst undergoes sintering less readily than previously reported catalyst particles that form from a solution of [Ni(cod)2].  相似文献   

2.
Steam-exploded lignin (SEL) was separated from cornstalk residue, which came from steam-exploded cornstalk after enzymatic hydrolysis. There are two methods to acquire SEL, the alkali solution and the organic solvent method. SEL was analyzed with respect to the elementary composition, molecular weight, IR spectrum, and 13C NMR spectra. The C9-formula of SEL was calculated from the experiment data. According to 13C NMR, SEL can be classified as a “GSH” type of lignin, and it is composed mainly of β-O-4 ether bonds together with β-5 and β-1 carbon-carbon linkages between the lignin structural units.  相似文献   

3.
Efficient conversion of lignin to aromatic hydrocarbons via depolymerization and subsequent hydrodeoxygenation is important. Previously, we found that NbOx species played a key role in the activation and cleavage of C–O bonds in lignin and its model compounds. In this study, commercial niobic acid (HY-340), niobium phosphate (NbPO-CBMM) and lab-made layered niobium oxide (Nb2O5-Layer) were chosen as supports to study the effect of Brönsted and Lewis acids on the activation of C–O bonds in lignin conversion. A variety of Ru-loaded, Nb-based catalysts with different Ru particle sizes were prepared and applied to the conversion of p-cresol. The results show that all the Ru/Nb-based catalysts produce high mole yields of C7–C9 hydrocarbons (82.3–99.1%). What's more, Ru/Nb2O5-Layer affords the best mole yield of C7–C9 hydrocarbons and selectivity for C7–C9 aromatic hydrocarbons, of up to 99.1% and 88.0%, respectively. Moreover, it was found that Lewis acid sites play important roles in the depolymerization of enzymatic lignin into phenolic monomers and the cleavage of the C–O bond of phenols. Additionally, the electronic state and particle size of Ru are significant factors which influence the selectivity for aromatic hydrocarbons. A partial positive charge on the metallic Ru surface and a smaller Ru particle size are beneficial in improving the selectivity for aromatic hydrocarbons.  相似文献   

4.
The lignin of mechanically ground aspen wood and lignins isolated from aspen wood attacked by the fungusPhanerochaete sanguinea have been investigated by quantitative1H and13C NMR spectroscopies. It has been shown that the biodestruction of the lignin takes place through the cleavage of alkyl-aryl and aryl-aryl bonds and is accompanied by demethylation (demethoxylation) reactions, and the oxidation of Cα and Cγ atoms. In addition to reactions in which the C—C bonds are cleaved, the formation of ether bonds has been observed. An interconnection has been shown between the variations in the amount of functional groups, fragments, and the bonds in biolignins and the loss in mass of the wood. A method is proposed for evaluating the carbohydrate content in lignin preparations using the NMR method.  相似文献   

5.
In this paper, the seven acid-insoluble lignin preparations from barley straw were first extracted with alkaline hydrogen peroxide in order to study how the delignification and degradation of the lignin is influenced by aqueous 1.5% H2O2 extractant to straw ratios. The results showed that treatment of dewaxed barley straw with 1.5% H2O2 at 45°C for 14 h (pH 12.0) under the extractant to straw ratios of 10:1, 13:1, 15:1, 18:1, 20:1, 25:1, and 30:1 resulted in dissolution of 65.8%, 68.4%, 68.4%, 69.0%, 69.7%, 71.6%, and 72.3% of the original lignin and 78.7%, 79.8%, 82.3%, 83.4%, 84.8%, 85.3%, and 85.3% of the original hemicelluloses, respectively. The degraded seven lignin samples were analyzed with respect to their chemical compositions, content of chemically linked polysaccharides, molecular weights and structural changes. It was found that the alkaline peroxide treatment under the conditions given led to a noticeable increase in a amount of carboxyl groups due to the oxidation. The results from 13C-NMR analyses showed that the treatment was extremely effective for isolation of highly pure lignins from the straw, and the treatment under the conditions used did not affect the overall structure of lignin. The β-O-4 ether bond and β-β carbon-carbon linkage were found to be the major linkages between lignin units. Hydroxycinnamic acids, such as p-coumaric and ferulic acids, appeared to be strongly linked to lignin molecules, in which p-coumaric acid was found to be bonded to lignin by ester linkage, while ferulic acid was linked by its phenolic group via ether bond to lignin and also principally linked by its carboxyl group via ester bond to lignin and/or hemicelluloses.  相似文献   

6.
Lignins are composed of phenylpropane units interconnected by labile and resistant bonds. A two-step degradation, thioacidolysis, provides detailed information on these network polymers. The first step involves lignin depolymerization with ethanethiol and BF3 etherate. The determination of the recovered thioethylated monomers provides an estimation of lignin units only involved in labile ether bonds. The ligninderived dimers, representative of resistant interunit bonds, are determined after a further desulfurization step. Results obtained for native and industrial hardwood lignins underline their structural differences. Native hardwood lignins are typified by a high proportion of linear fragments linked bifunctionally by β-O-4 bonds.  相似文献   

7.
The structures of 2‐[(2,3‐dimethylphenyl)carbamoyl]benzenesulfonamide, 2‐[(3,4‐dimethylphenyl)carbamoyl]benzenesulfonamide and 2‐[(2,6‐dimethylphenyl)carbamoyl]benzenesulfonamide, all C15H16N2O3S, are stabilized by extensive intra‐ and intermolecular hydrogen bonds. In all three structures, the sulfonamide and carbamoyl groups are involved in hydrogen bonding. In the 2,3‐dimethyl and 2,6‐dimethyl derivatives, dimeric units and chains of molecules are formed parallel to the c axis. In the 3,4‐dimethyl derivative, the hydrogen bonding creates tetrameric units, resulting in macrocyclic R44(22) rings that form sheets in the ab plane. The three analogues are closely related to the fenamate class of nonsteroidal anti‐inflammatory drugs.  相似文献   

8.
The activation and cleavage of C–C bonds remains a critical scientific issue in many organic reactions and is an unmet challenge due to their intrinsic inertness and ubiquity. Meanwhile, it is crucial for the valorization of lignin into high-value chemicals. Here, we proposed a novel strategy to enhance the Caromatic–Cα bond cleavage by pre-functionalization with amine sources, in which an active amine intermediate is first formed through Markovnikov hydroamination to reduce the dissociation energy of the Caromatic–Cα bond which is then cleaved to form target chemicals. More importantly, this strategy provides a method to achieve the maximum utilization of the aromatic nucleus and side chains in lignin or its platform molecules. Phenols and N,N-dimethylethylamine compounds with high yields were produced from herbaceous lignin or the p-coumaric acid monomer in the presence of industrially available dimethylamine (DMA).

Pre-functionalization with amine sources mediated the cleavage of Caromatic–Cα bonds to produce two valuable chemicals with high yields, for the full utilization of the aromatic rings and side-chains in lignin and its platform molecules.  相似文献   

9.
We report the complete ethanolysis of Kraft lignin over an α‐MoC1?x/AC catalyst in pure ethanol at 280 °C to give high‐value chemicals of low molecular weight with a maximum overall yield of the 25 most abundant liquid products (LP25) of 1.64 g per gram of lignin. The LP25 products consisted of C6–C10 esters, alcohols, arenes, phenols, and benzyl alcohols with an overall heating value of 36.5 MJ kg?1. C6 alcohols and C8 esters predominated and accounted for 82 wt % of the LP25 products. No oligomers or char were formed in the process. With our catalyst, ethanol is the only effective solvent for the reaction. Supercritical ethanol on its own degrades Kraft lignin into a mixture of small molecules and molecular fragments of intermediate size with molecular weights in the range 700–1400, differing in steps of 58 units, which is the weight of the branched‐chain linkage C3H6O in lignin. Hydrogen was found to have a negative effect on the formation of the low‐molecular‐weight products.  相似文献   

10.
The title compound, {[Cu(C14H9NO3)(C5H5N)]·C3H7NO}n or {[Cu2L2(py)2]·2DMF}n [py is pyridine, L is 4‐(salicylideneamino)benzoate and DMF is dimethylformamide], is composed of dimeric dicopper [CuL(py)]2 building units, which are interlinked into a one‐dimensional chain through the formation of Cu—OCOO bonds. The dimeric unit is centrosymmetric, containing two CuII atoms linked by bridging phenolate O atoms into a Cu2O2 plane with a chelating Cu—O bond length of 1.927 (2) Å and a bridging Cu—O bond length of 2.440 (2) Å. Interchain C—H...O and π–π stacking interactions are responsible for an extensive three‐dimensional structure in which the resulting channels are filled by DMF solvent molecules.  相似文献   

11.
Single crystals of a new polymorph of 1,4‐bis(imidazol‐1‐ylmethyl)benzene dihydrate (bix·2H2O), C14H14N4·2H2O, have been obtained by the hydrothermal method. The asymmetric unit is composed of two independent half‐bix molecules, one on an inversion center and one on a twofold axial site, and two water molecules. The disordered water molecules link into discrete tetrameric water units via two O—H...O hydrogen bonds, forming planar R44(8) rings. These tetrameric water units and bix molecules are further linked by two O—H...N hydrogen bonds into a three‐dimensional network in which an (106) hydrogen‐bonded ring is observed. These large rings lead to the formation of a fivefold interpenetrated network. If both the tetrameric water units and the bix molecules can be regarded as connected nodes, one single three‐dimensional net can then be rationalized as a CdSO4 network. This study indicates that topological methodology can be applied in some cases in order to understand the inherent characteristics of some hydrogen‐bonded supramolecular assemblies.  相似文献   

12.
《中国化学快报》2023,34(1):107298
Photocatalytic selective transform native lignin into valuable chemicals is an attractive but challenging task. Herein, we report a mesoporous sulfur-doped carbon nitride (MSCN-0.5) which is prepared by a facile one-step thermal condensation strategy. It is highly active and selective for the cleavage Cα?Cβ bond in β?O?4 lignin model compound under visible light radiation at room temperature, achieving 99% substrate conversion and 98% Cα?Cβ bond cleavage selectivity. Mechanistic studies revealed that the Cβ?H bond of lignin model compounds activated by holes and generate key Cβ radical intermediates, further induced the Cα?Cβ bond cleavage by superoxide anion radicals (?O2?) to produce aromatic oxygenates. Waste Camellia oleifera shell (WCOS) was taken as a representative to further understand the reaction mechanisms on native lignin. 33.2 mg of monophenolic compounds (Vanillin accounted for 22% and Syringaldehyde for 34%) can be obtained by each gram of WCOS lignin, which is 2.5 times as that of the pristine carbon nitride. The present work offers useful guidance for designing metal-free heterogeneous photocatalysts for Cα?Cβ bond cleavage to harvest monophenolic compounds.  相似文献   

13.
The lignin of mechanically ground aspen wood and lignins isolated from aspen wood attacked by the fungusPhanerochaete sanguinea have been investigated by quantitative1H and13C NMR spectroscopies. It has been shown that the biodestruction of the lignin takes place through the cleavage of alkyl-aryl and aryl-aryl bonds and is accompanied by demethylation (demethoxylation) reactions, and the oxidation of C and C atoms. In addition to reactions in which the C—C bonds are cleaved, the formation of ether bonds has been observed. An interconnection has been shown between the variations in the amount of functional groups, fragments, and the bonds in biolignins and the loss in mass of the wood. A method is proposed for evaluating the carbohydrate content in lignin preparations using the NMR method.Wood Chemistry Branch of the Institute of Organic Chemistry, Siberian Division of the Russian Academy of Sciences, Irkutsk. Irkutsk State University. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 547–557, July–August, 1994.  相似文献   

14.
The products of the radiation-stimulated dry distillation of coniferous hydrolytic lignin at a residual pressure of 1–5 torr have been obtained and analyzed. The tar distilled off under irradiation conditions predominantly contains phenols, including about 33% benzenediols. Among the benzenediols, the fraction of catechols is 69%. Phenoxyl radicals are considered to be direct precursors of the phenolic products. It has been found that the formation of benzenediols can be due to the rupture of the ether bond in the methoxy group. Among secondary processes, the reactions of the addition of ?H and ?CH3 radicals to the benzene ring have been considered.  相似文献   

15.
Quantitative 1 H and 13 C NMR spectroscopies demonstrate that biotransformation of aspen wood by the fungusTrametes villosusresults in oxidation and destruction of lignin with cleavage of C-C alkyl-alkyl bonds in side chains and partial demethoxylation in addition to cleavage of lignocarbohydrate bonds. New C ar -O-C bonds form while lignin is being destroyed at alkyl-alkyl bonds. Cleavage of rings and destruction of C ar -C bonds was not observed.  相似文献   

16.
Selective activation of the C(sp3)−H bond is an important process in organic synthesis, where efficiently activating a specific C(sp3)−H bond without causing side reactions remains one of chemistry's great challenges. Here we report that illuminated plasmonic silver metal nanoparticles (NPs) can abstract hydrogen from the C(sp3)−H bond of the Cα atom of an alkyl aryl ether β-O-4 linkage. The intense electromagnetic near-field generated at the illuminated plasmonic NPs promotes chemisorption of the β-O-4 compound and the transfer of photo-generated hot electrons from the NPs to the adsorbed molecules leads to hydrogen abstraction and direct cleavage of the unreactive ether Cβ−O bond under moderate reaction conditions (≈90 °C). The plasmon-driven process has certain exceptional features: enabling hydrogen abstraction from a specific C(sp3)−H bond, along with precise scission of the targeted C−O bond to form aromatic compounds containing unsaturated, substituted groups in excellent yields.  相似文献   

17.
The reactions of the phosphaethynolate anion ([PCO]) with a range of boranes were explored. BPh3 and [PCO] form a dimeric anion featuring P−B bonds and is prone to dissociation at room temperature. The more Lewis acidic borane B(C6F5)3 yields a less symmetric dimer of [PCO] with P−B and P−O bonds. Less sterically demanding HB(C6F5)2 and H2B(C6F5) boranes form a third isomer with [PCO] featuring both boranes bound to the same phosphorus atom. Despite the unexpected thermodynamic preference for P‐coordination, computational data illustrate that electronic and steric features impact the binding modes of the resulting dianionic dimers.  相似文献   

18.
It is shown that ab initio computations using the GAUSSIAN 70 package are able to identify the two C10 hydrogen bonds which are formed by 1:3 interactions in the tripeptide. The type II hydrogen bond is about twice as strong as the type I bond (4.2 vs. 2.3 kcal mol?1). This is presumably because the former hydrogen bond is straight and the latter is bent. Such hydrogen bonds are often thought to be the stabilising factor in the formation of the bends in protein chains.It is also shown that many of the features found in the dipeptide, particularly the C5 and C7 hydrogen bonds, occur again in the tripeptide with virtually the same energy and geometry. This confirms the view, based on chemical experience, that in a first approximation the tripeptide may be viewed as the sum of three amide units plus small correction terms.  相似文献   

19.
《中国化学快报》2022,33(9):4357-4362
Selective cleavage of robust C?C bonds to harvest value-added aromatic oxygenates is an intriguing but challenging task in lignin depolymerization. Photocatalysis is a promising technology with the advantages of mild reaction conditions and strong sustainability. Herein, we show a novel urchin-like Nb2O5 hollow microsphere (U-Nb2O5 HM), prepared by one-pot hydrothermal method, are highly active and selective for Cα?Cβ bond cleavage of lignin β-O-4 model compounds under mild conditions, achieving 94% substrate conversion and 96% C?C bond cleavage selectivity. Systematic experimental studies and density functional theory (DFT) calculations revealed that the superior performance of U-Nb2O5 HMs arises from more exposed active sites, more efficient free charge separation and the active (001) facet, which facilitates the activation of Cβ?H bond of lignin models and generate key Cβ radical intermediates by photogenerated holes, further inducing the Cα?Cβ bond cleavage to produce aromatic oxygenates. This work could provide some suggestions for the fabrication of hierarchical photocatalysts in the lignin depolymerization system.  相似文献   

20.
Crystals of the title compound, C2H6N4S, are built up from nonplanar 1‐(diaminomethylene)thiourea molecules. Pairs of molecules related by inversion are linked by N—H...N hydrogen bonds to form dimeric units, and weak N—H...S interactions link these dimeric units into a three‐dimensional framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号