首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Stationary two-layer liquid and gas flows with fluid evaporation at the interface are studied. On the solid impermeable boundaries of the channel, no-slip conditions are satisfied and a linear temperature distribution along the longitudinal coordinate and a condition for the vapor concentration at the upper boundary are specified. On the thermocapillary interface, remaining undeformed, the following conditions are specified: kinematic and dynamic conditions, a condition for thermal flows with mass transfer, continuity conditions for the velocity, temperature, and mass balance, and a relation for the saturated vapor concentration. An exact solution of the stationary problem for a given gas flow rate is obtained. Examples of velocity profiles are given for stationary flows of the ethanol-nitrogen system under normal and reduced gravity are given. The effect of longitudinal temperature gradients specified at the boundaries of the channel on the flow pattern is investigated.  相似文献   

3.
In this paper, we discuss the solitary waves at the interface of a two-layer incompressible inviscid fluid confined by two horizontal rigid walls, taking the effect of surface tension into account. First of all, we establish the basic equations suitable for the model considered, and hence derive the Korteweg-de Vries (KdV) equation satisfied by the first-order elevation of the interface with the aid of the reductive perturbation method under the approximation of weak dispersion. It is found that the KdV solitary waves may be convex upward or downward. It depends on whether the signs of the coefficients and of the KdV equation are the same or not. Then we examine in detail two critical cases, in which the nonlinear effect and the dispersion effect cannot balance under the original approximation. Applying other appropriate approximations, we obtain the modified KdV equation for the critical case of first kind (=0), and conclude that solitary waves cannot exist in the case considered as >0, but may still occur as <0, being in the form other than that of the KdV solitary wave.As for the critical case of second kind (=0), we deduce the generalized KdV equation, for which a kind of oscillatory solitary waves may occur. In addition, we discuss briefly the near-critical cases. The conclusions in this paper are in good agreement with some classical results which are extended considerably.  相似文献   

4.
The Kelvin–Helmholtz instability is believed to be the dominant instability mechanism for free shear flows at large Reynolds numbers. At small Reynolds numbers, a new instability mode is identified when the temporal instability of parallel viscous two fluid mixing layers is extended to current-fluid mud systems by considering a composite error function velocity profile. The new mode is caused by the large viscosity difference between the two fluids. This interfacial mode exists when the fluid mud boundary layer is sufficiently thin. Its performance is different from that of the Kelvin–Helmholtz mode. This mode has not yet been reported for interface instability problems with large viscosity contrasts.These results are essential for further stability analysis of flows relevant to the breaking up of this type of interface.  相似文献   

5.
The problem of two-layer convective flow of viscous incompressible fluids in a horizontal channel with solid walls in the presence of evaporation is considered in the Oberbeck–Boussinesq approximation assuming that the interface is an undeformable thermocapillary surface and taking into account the Dufour effect in the upper layer which is a mixture of gas and liquid vapor. The effects of longitudinal temperature gradients at the boundaries of the channel and the thicknesses of the layer on the flow pattern and the evaporation rate are studied under conditions of specified gas flow and the absence of vapor flow on the upper boundary of the channel. It is shown that the long-wavelength asymptotics for the decrement is determined from the flow characteristics, the longwavelength perturbations occurring in the system decay monotonically, and the thermal instability mechanism is not potentially the most dangerous.  相似文献   

6.
The stability of non-Newtonian fluid films moving on inclined planes is studied within the framework of the two-parameter Ostwald-de Waele model taking into account surface tension and van der Waals forces. The problem is solved analytically in the linear formulation, and the evolution of finite-amplitude perturbations is determined numerically. Novosibirsk Military Institute, Novosibirsk 630117. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 3, pp. 75–80, May–June, 2000.  相似文献   

7.
The stability of plane two-layer Couette and Poiseuille flows, where the lower layer consists of a Grad-model fluid and the upper layer is a viscous Newtonian fluid, is investigated. The disturbances are assumed to be of the long-wave type, and the analysis involves expansion in wave numbers and is limited by two approximations. Numerical calculations are made for some values of the parameters. The calculations indicate that the rotational energy of the fluid in the lower layer has a destabilizing effect on the flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 125–127, July–August, 1978.  相似文献   

8.
9.
10.
11.
The linear stability of a two-layer Couette flow of upper convected Maxwell liquids is considered. The fluids have different densities, viscosities, and elasticities, with surface tension at the interface. At low speeds, the interfacial mode may become unstable, while other modes stay stable. The shortwave asymptotics of the interfacial mode is analyzed. It is found that an elasticity difference can stabilize or destabilize the flow even in the absence of a viscosity difference. As the viscosity difference increases, the range of elasticities for which there is shortwave stability widens. A linearly stable arrangement can be achieved by placing the less viscous fluid in a thin layer to stabilize longwaves and using elasticities to stabilize shortwaves. Such an arrangement can be stable even when the density stratification is adverse.  相似文献   

12.
Some aspects of the problem of the stability and the nature of the secondary regimes of a plane two-layer Poiseuille flow of viscous dielectric fluids between horizontal electrodes with a constant potential difference are considered. A linear analysis shows that the electrostatic field can induce the growth of perturbations with an asymptotically small wavenumber when the dielectric permeabilities of the fluids are different. On the assumption that the perturbation wavelength is large as compared with the thickness of one of the layers and comparable with the thickness of the other in order of magnitude, one of the possible mechanisms of development of finite fluctuations is investigated. Within the framework of this mechanism the initial mathematical mdoel can be reduced to an integrodifferential evolutionary Kuramoto-Sivashinsky-type equation describing the behavior of the fluid interface. The periodic solutions of this equation, which are investigated numerically, are bounded and fairly diverse. Krasnoyarsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 45–55, March–April, 2000.  相似文献   

13.
A theoretical model of the interaction of standing waves with a deformable sea-bed is derived in the long-wave limit. The coupled response of this two-layer model for which the upper-layer fluid is inviscid and the lower layer bi-viscous is determined for periodic forcing by an external surface pressure. It is shown that for permanent features to form in the lower layer, the nonlinear transfer of energy from the directly forced wave to even spatial harmonics of the forcing must occur. Nonlinearity due to a history-dependent bi-viscous rheology is shown to result in the formation of permanent, half-wavelength bedforms with crests located under the antinodes of the overlying wave motion.  相似文献   

14.
15.
The present study is concerned with an analysis of gravitational and acoustic waves which are excited by a vibrational source deeply placed in a liquid covered by ice. An analysis of the rigidity characteristics of ice modeled by an elastic layer or by a Kirchhoff plate is done by factorization of the solution to the integral equation equivalent to an initially combined boundary value problem. The uncombined boundary condition is used to solve problems for unrestricted ice fields in [1–3], whereas combined conditions with vibrational sources positioned at the boundary of the medium are used in [4].Translated from Zhurnal Prikladnoi Mekhaniki, No. 3, pp. 125–129, May–June, 1986.  相似文献   

16.
Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 69–73, January–February, 1990.  相似文献   

17.
The stability of the interface between two immiscible fluids of different density which occupy a plane horizontal layer performing harmonic horizontal oscillations is considered. Within the framework of the ideal fluid model a transformation reducing the problem of small plane perturbations to the Mathieu equation is found. Resonance instability domains associated with the formation of capillary-gravitational waves are investigated. A model which takes into account dissipation processes due to the presence of viscous friction is constructed. The role of the viscous dissipation in suppressing resonance instability is discussed. Perm’. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 25–31, May–June, 1998. The work was carried out with partial support from the Russian Foundation for Basic Research (project No. 95-01-00386).  相似文献   

18.
The theory of nearly-extensional flow is developed to study the stability of extensional flow. For such flows a simple constitutive equation is derived for slightly disturbed extensional flow when a ‘short memory’ assumption is admissible.Following Minoshima and White and utilizing the constitutive equation obtained, a stability analysis for non-Newtonian fluid sheets is presented. The theoretical analysis presented is specific for an integral consitutive equation. The influence of the fluid elasticity on the stability behaviour is investigated. It is shown that the fluid sheet stability depends upon λk, where λ is the relaxation time and K is the elongation rate.  相似文献   

19.
Laser-induced fluorescence (LIF) and particle-image velocimetry (PIV) are used to study both thermals and plumes impinging on a stratified interface. Data are obtained for a central slice of the flow near the stratified interface. Both the thermal and plume are generated by releasing fresh water at the bottom of a tank filled with two layers of salt water of different densities. Thermals and plumes are studied at Reynolds numbers ranging from 3,000 to 8,000, above the value for the mixing transition, a Schmidt number of about 600, and Richardson numbers from 1 to 22. The Richardson and Reynolds numbers are based on the thermal or plume characteristics (size and vertical velocity) before impingement and the initial density difference across the interface. Laser-induced fluorescence (LIF) is used to determine the maximum penetration height, rebound distance and lateral spreading velocity. The vorticity results obtained from the PIV data reveal the vortical structure near impingement. When the thermal impinges upon the stratified interface, a baroclinic eddy generated at the interface appears to merge with eddies comprising the thermal itself to form a vortex ring. This ring remains near the interface, moving mainly along the lateral or horizontal direction away from the region of impingement. These results suggest that lateral transport is significant for thermals impinging on stratified interfaces, and that ignoring such transport may greatly underestimate overall transport and mixing in such flows.  相似文献   

20.
A numerical method was developed for flows involving an interface between a homogenous fluid and a porous medium. The numerical method is based on the finite volume method with body‐fitted and multi‐block grids. A generalized model, which includes Brinkman term, Forcheimmer term and non‐linear convective term, was used to govern the flow in the porous medium region. At its interface, a shear stress jump that includes the inertial effect was imposed, together with a continuity of normal stress. Furthermore, the effect of the jump condition on the diffusive flux was considered, additional to that on the convective part which has been usually considered. Numerical results of three flow configurations are presented. The method is suitable for coupled problems with regions of homogeneous fluid and porous medium, which have complex geometries. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号