首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analytic representation of individual vortex formations with different cross-sections is obtained for plane-parallel flows of viscous and ideal fluids. A flow in which one of the streamlines has cusp is also found. In these flows the vorticity is constant; therefore, the solutions obtained for the equations describing the kinematic variables in ideal fluid flows must simultaneously satisfy the Navier-Stokes equations.  相似文献   

2.
The two-dimensional free-boundary problem of steady periodic waves with vorticity is considered for water of finite depth. We investigate how flows with small-amplitude Stokes waves on the free surface bifurcate from a horizontal parallel shear flow in which counter-currents may be present. Two bifurcation mechanisms are described: one for waves with fixed Bernoulli’s constant, and the other for waves with fixed wavelength. In both cases the corresponding dispersion equations serve for defining wavelengths from which Stokes waves bifurcate. Necessary and sufficient conditions for the existence of roots of these equations are obtained. Two particular vorticity distributions are considered in order to illustrate the general results.  相似文献   

3.
This paper describes the Eulerian–Lagrangian boundary element model for the solution of incompressible viscous flow problems using velocity–vorticity variables. A Eulerian–Lagrangian boundary element method (ELBEM) is proposed by the combination of the Eulerian–Lagrangian method and the boundary element method (BEM). ELBEM overcomes the limitation of the traditional BEM, which is incapable of dealing with the arbitrary velocity field in advection‐dominated flow problems. The present ELBEM model involves the solution of the vorticity transport equation for vorticity whose solenoidal vorticity components are obtained iteratively by solving velocity Poisson equations involving the velocity and vorticity components. The velocity Poisson equations are solved using a boundary integral scheme and the vorticity transport equation is solved using the ELBEM. Here the results of two‐dimensional Navier–Stokes problems with low–medium Reynolds numbers in a typical cavity flow are presented and compared with a series solution and other numerical models. The ELBEM model has been found to be feasible and satisfactory. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
This paper studies periodic traveling gravity waves at the free surface of water in a flow of constant vorticity over a flat bed. Using conformal mappings the free-boundary problem is transformed into a quasilinear pseudodifferential equation for a periodic function of one variable. The new formulation leads to a regularity result and, by use of bifurcation theory, to the existence of waves of small amplitude even in the presence of stagnation points in the flow.  相似文献   

5.
We show that a free surface water flow of constant nonzero vorticity beneath a wave train and above a flat bed has to be two-dimensional and the vorticity must have only one nonzero component which points in the horizontal direction orthogonal to the direction of wave propagation. The obtained results are of relevance to studies of resonant wave train interactions in flows of constant nonzero vorticity: in contrast to irrotational flows, all wave trains have to propagate in the same direction. An important practical aspect of these considerations lies in that wave trains of constant vorticity model the interaction of swell with tidal currents, negative vorticity being appropriate for the flood current and positive vorticity for the ebb current.  相似文献   

6.
We show that the Hamiltonian framework permits an elegant formulation of the nonlinear governing equations for the coupling between internal and surface waves in stratified water flows with piecewise constant vorticity.  相似文献   

7.
The governing equations for depth-averaged turbulent flow are presented in both the primitive variable and streamfunction–vorticity forms. Finite element formulations are presented, with special emphasis on the handling of bottom stress terms and spatially varying eddy viscosity. The primitive variable formulation is found to be preferable because of its flexibility in handling spatial variation in viscosity, variability in water surface elevations, and inflow and outflow boundaries. The substantial reduction in computational effort afforded by the streamfunction–vorticity formulation is found not to be sufficient to recommend its use for general depth-averaged flows. For those flows in which the surface can be approximated as a fixed level surface, the streamfunction–vorticity form can produce results equivalent to the primitive variable form as long as turbulent viscosity can be estimated as a constant.  相似文献   

8.
The unsteady Navier-Stokes (NS) analysis of Osswald, Ghia and Ghia in velocity-vorticity variables is modified to study the dynamic stall phenomenon for a NACA 0015 airfoil undergoing constant Ω0 pitch-up maneuvers at Reynolds number Re =10 000 and 45000. The use of third-order accurate biased upwind differencing for the nonlinear convective terms in the vorticity transport equation removes the spurious oscillations observed in the earlier studies by the authors for these values of Re. The fully implicit and vectorized ADI-BGE method of the authors is used to solve the unsteady NS equations. Instantaneous inertial surface vorticity, which is an invariant of the choice of reference frame selected, is employed to determine the location of separation of the boundary-layer flow on the suction surface; also a separation bubble embedded within the boundary layer is observed for both cases somewhere between the leading edge and the quarter-chord point. Primary, secondary, tertiary and quarternary vortices have been observed before the dynamic-stall vortex evolves and gathers its maximum strength.  相似文献   

9.
A numerical analysis is formulated and used to determine the transient temperature fields associated with Joule heating of a cooled stationary electrical contact. The contact is treated as a hemisphere. The field equations are developed using complex variables and conformal transforms, and the resulting equations are solved using finite differences.Contours of constant temperature are given that show a maximum temperature located very close to the center of the contact patch; this qualitatively agrees with earlier findings of Holm.  相似文献   

10.
A Chebyshev collocation method for solving the unsteady two-dimensional Navier–Stokes equations in vorticity–streamfunction variables is presented and discussed. The discretization in time is obtained through a class of semi-implicit finite difference schemes. Thus at each time cycle the problem reduces to a Stokes-type problem which is solved by means of the influence matrix technique leading to the solution of Helmholtz-type equations with Dirichlet boundary conditions. Theoretical results on the stability of the method are given. Then a matrix diagonalization procedure for solving the algebraic system resulting from the Chebyshev collocation approximation of the Helmholtz equation is developed and its accuracy is tested. Numerical results are given for the Stokes and the Navier–Stokes equations. Finally the method is applied to a double-diffusive convection problem concerning the stability of a fluid stratified by salinity and heated from below.  相似文献   

11.
The unsteady nonlinear interaction of three-dimensional vortices with a free surface is a great challenge in fluid mechanics, which has deep theoretical significance and important practical background. Applying the three-dimensional VOF method, the interactions of three-dimensional axisymmetric vortex rings with a free surface in an incompressible viscous fluid are numerically simulated. The influence of the Froude number and the surface tension are studied and the evolution of the vorticity, the trajectories of the vortex rings and the baroclinic vorticity on the surface are obtained. The results agreed well with the experiments reported in the literature. The project supported by the National Natural Science Foundation of China  相似文献   

12.
 Steady, two-dimensional, symmetric, laminar and incompressible flow past parabolic bodies in a uniform stream with constant heat flux is investigated numerically. The full Navier–Stokes and energy equations in parabolic coordinates with stream function, vorticity and temperature as dependent variables were solved. These equations were solved using a second order accurate finite difference scheme on a non-uniform grid. The leading edge region was part of the solution domain. Wide range of Reynolds number (based on the nose radius of curvature) was covered for different values of Prandtl number. The flow past a semi-infinite flat plate was obtained when Reynolds number is set equal to zero. Results are presented for pressure and temperature distributions. Also local and average skin friction and Nusselt number distributions are presented. The effect of both Reynolds number and Prandtl number on the local and average Nusselt number is also presented. Received on 5 July 2000  相似文献   

13.
This paper gives a review of methods where Green's theorem may be employed in solving numerically the Navier–Stokes equations for incompressible fluid motion. They are based on the concept of using the theorem to transform local boundary conditions given on the boundary of a closed region in the solution domain into global, or integral, conditions taken over it. Two formulations of the Navier–Stokes equations are considered: that in terms of the streamfunction and vorticity for two-dimensional motion and that in terms of the primitive variables of the velocity components and the pressure. In the first formulation overspecification of conditions for the streamfunction is utilized to obtain conditions of integral type for the vorticity and in the second formulation integral conditions for the pressure are found. Some illustrations of the principle of the method are given in one space dimension, including some derived from two-dimensional flows using the series truncation method. In particular, an illustration is given of the calculation of surface vorticity for two-dimensional flow normal to a flat plate. An account is also given of the implementation of these methods for general two-dimensional flows in both of the mentioned formulations and a numerical illustration is given.  相似文献   

14.
After formulation of the various dynamical and kinematical relations connecting the flow quantities with the geometrical parameters of the stream line trajectories, the expressions for the tangent, principal normal and binormal vectors and the curvature and torsion of the stream line have been obtained in-terms of the velocity components, the pressure, the density, the magnetic field and the relaxation variable. This is followed by expressing the equations governing the flow in the intrinsic forms. It has been shown that the non-equilibrium character of the gas decreases the total pressure gradient along the streamlines, but the total pressure remains constant along the binormals and if the stream lines are straight lines, the trajectories of the principal normals lie on the surface of the constant total pressure. Further, the expressions for vorticity components in terms of curvature of the stream line and the velocity gradients along the stream line and their principal normals and binormals have been obtained. Finally, a class of circular helical flows have been discussed.  相似文献   

15.
The two-dimensional flow of an ideal incompressible fluid is considered. Within an ellipse, the flow has a constant vorticity, while outside the ellipse there is an irrotational flow with circulation. Such motion can be described by Lagrange equations for a dynamical system with an infinite number of degrees of freedom. For a system with four degrees of freedom a new steady solution is obtained and its stability investigated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 55–60, July–August, 1983.We thank L. I. Sedov for his interest in the work.  相似文献   

16.
 The Reynolds-averaged flow for a solid/free-surface juncture boundary layer and wake is documented. The three mean-velocity components and five of the Reynolds stresses are measured for a surface-piercing flat plate in a towing tank using a laser-Doppler velocimeter system for both boundary-layer and wake planes in regions close to the free surface. The experimental method is described, including the foil-plate model, laser-Doppler velocimeter system, conditions, and uncertainty analysis. The underlying flow data is in excellent agreement with benchmark data. Inner (near the plate and wake centerplane and below the free surface) and outer (near the free surface) regions of high streamwise vorticity of opposite sign are observed, which transport, respectively, high mean velocity and low turbulence from the outer to the inner and low mean velocity and high turbulence from the inner to the outer portions of the boundary layer and wake. For the wake, the inner region of vorticity is relatively weak. The physical mechanism for the streamwise vorticity is analyzed with regard to the Reynolds-averaged streamwise vorticity equation. The anisotropy of the crossplane normal Reynolds stresses closely correlates with the vorticity and, additionally, indicates similarity, i.e., its nature is such that it only depends on the proximity to the plate and free surface boundaries or wake centerplane symmetry plane. Free-surface effects on the Reynolds stresses are analyzed with regard to the behavior close to the free surface of the turbulent kinetic energy and the normal components of the anisotropy tensor and the anisotropy invariants. Close to the free surface, the turbulent kinetic energy is nearly constant and increases for the inner and outer portions, respectively, of the boundary layer and wake and the normal components of the anisotropy tensor and the anisotropy invariants roughly correspond to the limiting values for two-component turbulence. The similarities and differences between the present results and analysis with those from related studies are discussed. The data and analysis should have practical application with regard to the development of turbulence models for computational fluid dynamics methods for the Reynolds-averaged Navier–Stokes equations. Received: 27 May 1997/Accepted: 1 August 1997  相似文献   

17.
The study presented in this paper treats the harmonic and transient wave motion of an incompressible isotropic semi-infinite elastic medium with a shear modulus increasing linearly with depth. The medium has a constant mass density and an initial hydrostatic stress distribution due to a constant gravity. In particular, attention is given to the case of a vanishing top rigidity. For this case it is shown that the governing equations resemble the equations governing the deep water motion, and that under normal loading the behaviour of the upper surface resembles that of the upper surface of (deep) water.  相似文献   

18.
The purpose of the present study is to establish a numerical model appropriate for solving inviscid/viscous free‐surface flows related to nonlinear water wave propagation. The viscous model presented herein is based on the Navier–Stokes equations, and the free‐surface is calculated through an arbitrary Lagrangian–Eulerian streamfunction‐vorticity formulation. The streamfunction field is governed by the Poisson equation, and the vorticity is obtained on the basis of the vorticity transport equation. For computing the inviscid flow the Laplace streamfunction equation is used. These equations together with the respective (appropriate) fully nonlinear free‐surface boundary conditions are solved using a finite difference method. To demonstrate the model feasibility, in the present study we first simulate collision processes of two solitary waves of different amplitudes, and compute the phenomenon of overtaking of such solitary waves. The developed model is subsequently applied to calculate (both inviscid and the viscous) flow field, as induced by passing of a solitary wave over submerged rectangular structures and rigid ripple beds. Our study provides a reasonably good understanding of the behavior of (inviscid/viscous) free‐surface flows, within the framework of streamfunction‐vorticity formulation. The successful simulation of the above‐mentioned test cases seems to suggest that the arbitrary Lagrangian–Eulerian/streamfunction‐vorticity formulation is a potentially powerful approach, capable of effectively solving the fully nonlinear inviscid/viscous free‐surface flow interactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This paper provides a multigrid incremental line-Gauss-Seidel method for solving the steady Navier-Stokes equations in two and three dimensions expressed in terms of the vorticity and velocity variables. The system of parabolic and Poisson equations governing the scalar components of the vector unknowns is solved using centred finite differences on a non-staggered grid. Numerical results for the two-dimensional driven cavity problem indicate that the spatial discretization of the equation defining the value of the vorticity on the boundary is extremely critical to obtaining accurate solutions. In fact, a standard one-sided three-point second-order-accurate approximation produces very inaccurate results for moderate-to-high values of the Reynolds number unless an exceedingly fine mesh is employed. On the other hand, a compact two-point second-order-accurate discretization is found to be always satisfactory and provides accurate solutions for Reynolds number up to 3200, a target impossible heretofore using this formulation and a non-staggered grid.  相似文献   

20.
The two‐dimensional time‐dependent Navier–Stokes equations in terms of the vorticity and the stream function are solved numerically by using the coupling of the dual reciprocity boundary element method (DRBEM) in space with the differential quadrature method (DQM) in time. In DRBEM application, the convective and the time derivative terms in the vorticity transport equation are considered as the nonhomogeneity in the equation and are approximated by radial basis functions. The solution to the Poisson equation, which links stream function and vorticity with an initial vorticity guess, produces velocity components in turn for the solution to vorticity transport equation. The DRBEM formulation of the vorticity transport equation results in an initial value problem represented by a system of first‐order ordinary differential equations in time. When the DQM discretizes this system in time direction, we obtain a system of linear algebraic equations, which gives the solution vector for vorticity at any required time level. The procedure outlined here is also applied to solve the problem of two‐dimensional natural convection in a cavity by utilizing an iteration among the stream function, the vorticity transport and the energy equations as well. The test problems include two‐dimensional flow in a cavity when a force is present, the lid‐driven cavity and the natural convection in a square cavity. The numerical results are visualized in terms of stream function, vorticity and temperature contours for several values of Reynolds (Re) and Rayleigh (Ra) numbers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号