首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. Nath 《Meccanica》2012,47(7):1797-1814
Similarity solutions are obtained for one- dimensional isothermal and adiabatic unsteady flow behind a strong cylindrical shock wave propagating in a rotational axisymmetric dusty gas, which has a variable azimuthal fluid velocity together with a variable axial fluid velocity. The shock is assumed to be driven out by a moving piston and the dusty gas to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-condition is maintained and variable energy input is continuously supplied by the piston. The shock Mach number is not infinite, but has a finite value. The azimuthal and axial component of the fluid velocity in the ambient medium are assumed to be vary and obey power laws, and the density of the ambient medium is taken to be constant. In order to obtain the similarity solutions the angular velocity of the ambient medium is assumed to be decreasing as the distance from the axis increases. Effects of the variation of the parameter of non-idealness of the gas in the mixture, the mass concentration of solid particles and the ratio of the density of solid particles to the initial density of the gas are investigated.  相似文献   

2.
Natural-convection flows in continua are studied at the parameter values beyond the critical point of the liquid-gas phase transition. The theory of similarity of supercritical convective flows is generalized by taking account for the dependence of the thermodynamic properties of a medium on the temperature and the density. In the case of an arbitrary two-parameter medium calibration relations, which serve for determining the similarity criteria of convection, are derived. In the fluid with the Van der Waals equation of state the calibration relations are reduced to the form of functions of the dimensionless temperature and density.  相似文献   

3.
G. Nath 《Shock Waves》2014,24(4):415-428
Similarity solutions are obtained for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential cylindrical shock wave propagating in a rotational axisymmetric dusty gas, which has variable azimuthal and axial fluid velocities. The shock wave is driven by a piston moving with time according to an exponential law. Similarity solutions exist only when the surrounding medium is of constant density. The azimuthal and axial components of the fluid velocity in the ambient medium are assumed to obey exponential laws. The dusty gas is assumed to be a mixture of small solid particles and a perfect gas. To obtain some essential features of the shock propagation, small solid particles are considered as a pseudo-fluid; it is assumed that the equilibrium flow conditions are maintained in the flow field, and that the viscous stresses and heat conduction in the mixture are negligible. Solutions are obtained for the cases when the flow between the shock and the piston is either isothermal or adiabatic, by taking into account the components of the vorticity vector. It is found that the assumption of zero temperature gradient results in a profound change in the density distribution as compared to that for the adiabatic case. The effects of the variation of the mass concentration of solid particles in the mixture \(K_p\) , and the ratio of the density of solid particles to the initial density of the gas \(G_a\) are investigated. A comparison between the solutions for the isothermal and adiabatic cases is also made.  相似文献   

4.
Similarity solutions for the flow of a non-ideal gas behind a strong exponential shock driven out by a piston (cylindrical or spherical) moving with time according to an exponential law are obtained. Similarity solutions exist only when the surrounding medium is of constant density. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic. It is found that the assumption of zero temperature gradient brings a profound change in the density distribution as compare to that of the adiabatic case. Effects of the non-idealness of the gas on the flow-field between the shock and the piston are investigated. The variations of density-ratio across the shock and the location of the piston with the parameter of non-idealness of the gas are also obtained.  相似文献   

5.
A theoretical solution is presented for the convective heat transfer of Giesekus viscoelastic fluid in pipes and channels, under fully developed thermal and hydrodynamic flow conditions, for an imposed constant heat flux at the wall. The fluid properties are taken as constant and axial conduction is negligible. The effect of Weissenberg number (We), mobility parameter (α) and Brinkman number (Br) on the temperature profile and Nusselt number are investigated. The results emphasize the significant effect of viscous dissipation and fluid elasticity on the Nusselt number in all circumstances. For wall cooling and the Brinkman number exceeds a critical value (Br 1), the heat generated by viscous dissipation overcomes the heat removed at the wall and fluid heats up longitudinally. Fluid elasticity shifts this critical Brinkman number to higher values.  相似文献   

6.
The stability of the state of rest of a heated infinite horizontal layer of a viscous heat-conducting fluid (the Rayleigh-Benard problem) is considered. The equation of state for the fluid takes into account the nonmonotonic temperature and pressure dependence of water density. Instability of the mechanical equilibrium with respect to small monotonic perturbations is studied. The effect of the problem parameters on the Rayleigh numbers and their corresponding critical motions is investigated numerically using linear theory. Numerical investigation of the spectral problem is based on the Godunov-Abramov orthogonalization method. The calculation results are compared with the well-known results for the limiting case where the density is considered a quadratic function of temperature and does not depend on pressure. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 2, pp. 27–38, March–April, 2007.  相似文献   

7.
The formation of the temperature field due to the barothermal effect when oil is displaced from a porous medium by water is investigated in the piston displacement and two-phase flow approximations. The approach of the displacement front to the outlet from the porous medium leads to a sharp increase in temperature and the temperature anomalies are observed to depend on the saturation.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.3, pp. 104–109, May–June, 1992.  相似文献   

8.
Considering the exponential viscosity–temperature relation, effect of temperature-dependent viscosity on forced convection of a liquid through a porous medium, bounded by isoflux parallel plates, is investigated numerically based on the general model of momentum transfer. Local effects of viscosity variation on the distribution of velocity and temperature are analyzed. Moreover, global aspects of the problem are investigated where corrections are proposed for total pressure drop and the fully developed Nusselt number, in the form of out/in viscosity ratio. Results are obtained over a wide range of permeabilities from clear (of solid material) fluid to very low permeability, where for constant properties one expects a nearly slug flow.  相似文献   

9.
Models describing the process of flow of a high- viscosity fluid through a porous medium heated by electromagnetic radiation are investigated analytically and numerically with allowance for the temperature dependence of the fluid viscosity and density. In addition to ordinary heating, the nonlinear electromagnetic heating regime associated with variation of the radiation absorption coefficient with temperature is considered.  相似文献   

10.
The problem of the propagation of longitudinal Biot waves in a porous medium saturated with a weakly compressible liquid (water) or a gas is considered theoretically. The frequency dependence of the phase velocities and damping coefficients is investigated numerically. It is shown that for a certain relationship between the parameters of the porous medium and the saturating fluid there is a “critical” frequency at which the properties of longitudinal waves of both kinds are identical. An analytical expression for this “critical” frequency is obtained. It is shown that for a gas-saturated porous medium, at a certain frequency, in both longitudinal waves the relative gas-matrix motion changes type. Assuming that the saturating-gas behavior corresponds to an adiabatic equation of state, an estimate is obtained for the threshold pore pressure necessary for the restructuring of the relative motion. The wave associated with matrix deformation is shown to have a high damping coefficient in a porous medium saturated with a weakly compressible liquid (water in the case considered) but to be only weakly damped in a gas-saturated porous medium.  相似文献   

11.
李明 《固体力学学报》2017,38(5):426-432
以非局部弹性理论为基础,采用欧拉-伯努利梁模型,考虑管型区域内滑移边界条件以及碳纳米管的小尺度效应,应用哈密顿原理获得了温度场与轴向磁场共同作用下的输流单层固支碳纳米管(SWCNT)的振动控制方程以及边界条件,依靠微分变换法(DTM法)对此高阶偏微分方程进行求解,通过数值计算研究了多场中单层固支输流碳纳米管的振动与失稳问题。结果表明:温度场、轴向磁场强度、Knudsen数及小尺度参数都会对系统振动频率以及失稳临界流速产生影响。  相似文献   

12.
张兴义  周军  周又和 《实验力学》2013,28(5):572-579
熔融织构的钇钡铜氧化物(YBCO)高温超导块材具有较高的临界电流密度和较好的力学性能,在制作高场磁体、悬浮列车等方面具有重要的应用。本文首先在恒定的液氮温度下,通过对不同等待时间, 场冷和零场冷条件下悬浮力特征的测试, 发现高温超导块材在液氮温度表现出较强的时效性;接着,对于不同温度循环引起的悬浮系统悬浮力时间弛豫特征研究显示出高温超导块材在低温下具有鲜明的记忆特性,随着温度的升高,其记忆效应逐渐消失,且正、负温度循环对其记忆效应影响表现出不一致性。所有这些特性表明,高温超导块材具有和自旋玻璃类似的性质,其根源为超导体内部复杂的微观结构。  相似文献   

13.
Numerical solutions for the free convection heat transfer in a viscous fluid at a permeable surface embedded in a saturated porous medium, in the presence of viscous dissipation with temperature-dependent variable fluid properties, are obtained. The governing equations for the problem are derived using the Darcy model and the Boussinesq approximation (with nonlinear density temperature variation in the buoyancy force term). The coupled non-linearities arising from the temperature-dependent density, viscosity, thermal conductivity, and viscous dissipation are included. The partial differential equations of the model are reduced to ordinary differential equations by a similarity transformation and the resulting coupled, nonlinear ordinary differential equations are solved numerically by a second order finite difference scheme for several sets of values of the parameters. Also, asymptotic results are obtained for large values of | f w|. Moreover, the numerical results for the velocity, the temperature, and the wall-temperature gradient are presented through graphs and tables, and are discussed. It is observed that by increasing the fluid variable viscosity parameter, one could reduce the velocity and thermal boundary layer thickness. However, quite the opposite is true with the non-linear density temperature variation parameter.  相似文献   

14.
This paper describes the unsteady convective flow of a supercritical fluid in the Rayleigh–Bénard configuration. Two-dimensional earlier studies reported fast temperature equilibrium due to the piston effect and the development of a convective instability when the local Rayleigh number exceeds a critical value. In the present work, a high order 3D finite volume method has been developed and optimized, and to our knowledge, we show for the first time a three-dimensional convective instability in a supercritical fluid. Inspecting the time-evolution of temperature field patterns, we exhibit corner effects and a three-dimensional behavior of the flow. To cite this article: G. Accary et al., C. R. Mecanique 332 (2004).  相似文献   

15.
In a porous material, both the pressure drop across a bubble and its speed are nonlinear functions of the fluid velocity. Nonlinear dynamics of bubbles in turn affect the macroscopic hydraulic conductivity, and thus the fluid velocity. We treat a porous medium as a network of tubes and combine critical path analysis with pore-scale results to predict the effects of bubble dynamics on the macroscopic hydraulic conductivity and bubble density. Critical path analysis uses percolation theory to find the dominant (approximately) one-dimensional flow paths. We find that in steady state, along percolating pathways, bubble density decreases with increasing fluid velocity, and bubble density is thus smallest in the smallest (critical) tubes. We find that the hydraulic conductivity increases monotonically with increasing capillary number up to Ca 10–2, but may decrease for larger capillary numbers due to the relative decrease of bubble density in the critical pores. We also identify processes that can provide a positive feedback between bubble density and fluid flow along the critical paths. The feedback amplifies statistical fluctuations in the density of bubbles, producing fluctuations in the hydraulic conductivity.  相似文献   

16.
Linear stability criterion for the onset of natural convection in a fluid saturated porous medium with uniform internal heat generation and density maximum is determined. The porous medium is not in local thermal equilibrium (LTE) and we follow a two-field model for the energy equation. It is found that both the heat generation and density maximum have an additive effect in advancing the onset condition. In general the destabilising effect of density maximum increases for large values of the fluid heat generation parameter. This effect becomes prominent even for small values of the fluid heat generation parameter when the flow is of Darcy type and LTE is not valid.  相似文献   

17.
研究热环境中被弹性介质包围的微米输流管道的横向振动问题. 根据Hamilton 原理及非线性热弹性理论建立管道横向振动控制方程,并利用复模态法对其进行求解,得到了系统的固有频率和屈曲失稳临界流速,讨论了环境温度和一些重要系统参数对管道振动特性的影响. 研究结果表明:环境温度变化、管道和流体的微尺度效应、管道外径及弹性介质刚度对输流微管道固有频率和临界流速都有很大影响.  相似文献   

18.
Similarity solutions are proposed for the analysis of free convection flow over a non-isothermal body of arbitrary shape embedded in porous media in the presence of internal heat generation. The porous medium is saturated with non-Newtonian power law fluid. The effect of temperature dependent viscosity on heat transfer rates is investigated. The linearized version of the Arrhenius law for temperature dependent viscosity is considered and it is shown that the heat transferred is more for a less viscous fluid.  相似文献   

19.
The onset of double-diffusive convection in a horizontal fluid layer is studied. The density is assumed to depend quadratically on the temperature and linearly on the solute concentration. Under the Boussinesq approximation, the linear stability of the conduction state is investigated with respect to the oscillatory and steady convection modes. For steady onset, the critical thermal Rayleigh number is found to be a double-valued function of the solutal Rayleigh number as long as the relative maximum of the density profile exists within the fluid layer. Driving mechanisms of the steady convections are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号