首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aggregation behavior of aqueous solutions of ionic liquids   总被引:8,自引:0,他引:8  
The aggregation behavior in aqueous solutions of three ionic liquids based on the 1-alkyl-3-methylimidazolium cation has been investigated by means of surface tension, conductivity, and small-angle neutron scattering (SANS) measurements. From analysis of the SANS data, models for the shapes and sizes of aggregates have been proposed: the short-chain 1-butyl-3-methylimidazolium tetrafluoroborate [C4mim] [BF4] system can be best modeled by treating it as a dispersion of polydisperse spherical aggregates that form above a critical aggregation concentration, whereas the 1-octyl-3-methylimidazolium iodide, [C8mim] [I], solutions can be modeled as a system of regularly sized near-spherical charged micelles that form above a critical micelle concentration. Solutions of 1-octyl-3-methylimidazolium chloride, [C8mim]-[Cl], display weak long-range ordering of possibly disklike particles culminating in the formation of structures with distinct long-range order at higher concentrations.  相似文献   

2.
Extensive applications of ionic liquids (ILs) may result in their accumulation in the ecological environment and organisms. Although ILs are popularly called "green solvents", their toxicity, in fact, has been exhibited. Therefore the interaction of ILs with biomolecules is a cutting-edge research subject. Herein, the interactions of 1-butyl-3-methylimidazolium carboxylate ionic liquids ([C(4)mim][HCOO], [C(4)mim][CH(3)COO] and [C(4)mim][CH(3)CH(2)COO]) with glucose in water were studied for their volumetric properties, viscosity, conductivity and NMR spectra. Limiting apparent molar volumes (V(Φ, IL)(0)), viscosity B-coefficients, limiting molar conductivities (Λ(0)) and Walden products (Λ(0)η(0)) were evaluated for the ILs in glucose + water solutions. Volumetric interaction parameters were also obtained from the transfer volumes of the ionic liquids. The contributions of the solvent properties (B(1)) and the ionic liquid-solvent interactions (B(2)) to the B-coefficient were extracted, together with molar activation energies (Δμ(IL)(0≠)) of the ionic liquids for viscous flow of the aqueous glucose + IL solution. In addition, the (13)C and (1)H NMR spectra of methyl β-D-glucopyranoside and ILs in β-D-glucopyranoside + IL + D(2)O were studied. The NMR results show that no special and strong interactions were observed between glucopyranoside and the ILs. However, it was confirmed that the H2 on the imidazolium ring has more activity (acidity) than atoms H4 and H5. The macro-properties and their changes were also discussed in terms of the size, structure and solvation of the ILs and glucose.  相似文献   

3.
The solvation and aggregation of the ionic liquid (IL) 1-n-butyl-3-methylimidazolium chloride ([C4mim]Cl) in water and dimethylsulfoxide (DMSO) were examined by analysis of (1)H and (35/37)Cl chemical shift perturbations and molecular dynamics (MD) simulations. Evidence of aggregation of the IL n-butyl chains in aqueous environments at IL concentrations of 75-80 wt% was observed both in the NMR experiments and in the MD simulations. The studies also show that [C4mim]Cl behaves as a typical electrolyte in water, with both ions completely solvated at low concentrations. On the other hand, the data reveal that the interactions between the [C4mim](+) and Cl(-) ions strengthen as the DMSO content of the solutions increases, and IL-rich clusters persist in this solvent even at concentrations below 10 wt%. These results provide an experimentally supported atomistic explanation of the effects that these two solvents have on some of the macroscopic properties of [C4mim]Cl. The implications that these findings could have on the design of IL-based solvent systems are briefly discussed.  相似文献   

4.
Four new Th(IV), U(IV), and Np(IV) hexanuclear clusters with 1,2-phenylenediphosphonate as the bridging ligand have been prepared by self-assembly at room temperature. The structures of Th(6)Tl(3)[C(6)H(4)(PO(3))(PO(3)H)](6)(NO(3))(7)(H(2)O)(6)·(NO(3))(2)·4H(2)O (Th6-3), (NH(4))(8.11)Np(12)Rb(3.89)[C(6)H(4)(PO(3))(PO(3)H)](12)(NO(3))(24)·15H(2)O (Np6-1), (NH(4))(4)U(12)Cs(8)[C(6)H(4)(PO(3))(PO(3)H)](12)(NO(3))(24)·18H(2)O (U6-1), and (NH(4))(4)U(12)Cs(2)[C(6)H(4)(PO(3))(PO(3)H)](12)(NO(3))(18)·40H(2)O (U6-2) are described and compared with other clusters of containing An(IV) or Ce(IV). All of the clusters share the common formula M(6)(H(2)O)(m)[C(6)H(3)(PO(3))(PO(3)H)](6)(NO(3))(n)((6-n)) (M = Ce, Th, U, Np, Pu). The metal centers are normally nine-coordinate, with five oxygen atoms from the ligand and an additional four either occupied by NO(3)(-) or H(2)O. It was found that the Ce, U, and Pu clusters favor both C(3i) and C(i) point groups, while Th only yields in C(i), and Np only C(3i). In the C(3i) clusters, there are two NO(3)(-) anions bonded to the metal centers. In the C(i) clusters, the number of NO(3)(-) anions varies from 0 to 2. The change in the ionic radius of the actinide ions tunes the cavity size of the clusters. The thorium clusters were found to accept larger ions including Cs(+) and Tl(+), whereas with uranium and later elements, only NH(4)(+) and/or Rb(+) reside in the center of the clusters.  相似文献   

5.
Different inner-sphere coordination environments are observed for the uranyl nitrate complexes formed with octyl-phenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and tributyl phosphate in dodecane and in the hydrophobic ionic liquids (ILs) [C(4)mim][PF(6)] and [C(8)mim][N(SO(2)CF(3))(2)]. Qualitative differences in the coordination environment of the extracted uranyl species are implied by changes in peak intensity patterns and locations for uranyl UV-visible spectral bands when the solvent is changed. EXAFS data for uranyl complexes in dodecane solutions is consistent with hexagonal bipyramidal coordination and the existence of UO(2)(NO(3))(2)(CMPO)(2). In contrast, the complexes formed when uranyl is transferred from aqueous nitric acid solutions into the ILs exhibit an average equatorial coordination number of approximately 4.5. Liquid/liquid extraction results for uranyl in both ILs indicate a net stoichiometry of UO(2)(NO(3))(CMPO)(+). The concentration of the IL cation in the aqueous phase increases in proportion to the amount of UO(2)(NO(3))(CMPO)(+) in the IL phase, supporting a predominantly cation exchange mechanism for partitioning in the IL systems.  相似文献   

6.
Two stable nanofluids comprising of mixed valent copper(I,II) oxide clusters (<1 nm) suspended in 1-butyl-3-methylimidazolium acetate, [C(4)mim][OAc], and copper(II) oxide nanoparticles (<50 nm) suspended in trioctyl(dodecyl)phosphonium acetate, [P(8 8 8 12)][OAc], were synthesised in a facile one-pot reaction from solutions of copper(II) acetate hydrate in the corresponding ionic liquids. Formation of the nanostructures was studied using (13)C NMR spectroscopy and differential scanning calorimetry (DSC). From a solution of Cu(OAc)(2) in 1-ethyl-3-methylimidazolium acetate, [C(2)mim][OAc], crystals were obtained that revealed the structure of [C(2)mim][Cu(3)(OAc)(5)(OH)(2)(H(2)O)]·H(2)O, indicating the formation of copper hydroxo-clusters in the course of the reaction. Synthesised nanostructures were studied using transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Physical properties of the prepared IL-nanofluids were examined using IR and UV-VIS spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and densitometry.  相似文献   

7.
Densities, conductivities, and polarity indexes of pyrene for aqueous solutions of a series of ionic liquids [C(n)mim]Br (n = 4, 6, 8, 10, 12) and [C4mim][BF4] have been determined at 298.15 K as a function of ionic liquid concentrations. It was shown that possible aggregation appeared for the ionic liquids in aqueous solutions except for [C4mim]Br. The critical aggregation concentration (CAC) of the ionic liquids, the ionization degree of aggregates (beta), the standard Gibbs energy of aggregation (Delta G(m)(o)), the limiting molar conductivity (Lambda(m)(o)), and the standard partial molar volume (V(m)(o)) for the ionic liquids were derived from the experimental data. The dependence of the CAC, Delta G(m)(o), Lambda(m)(o), and V(m)(o) on the length of the alkyl chain of the cations was examined. It was further suggested from volumetric data that a micelle was formed for [C8mim]Br, [C10mim]Br, and [C12mim]Br in aqueous solutions. Their apparent molar volumes at the critical micelle concentration (V Phi,CMC), apparent molar volumes in the micelle phase (V(Phi)(mic)), and the change of their apparent molar volume upon micellization (Delta V Phi,m) were calculated by application of the pseudophase model of micellization. In addition, the average aggregation number of [C(n)mim]Br (n = 8, 10, 12) has been determined by the steady-state fluorescence quenching technique, and predicted from a simple geometrical mode. It is found that the experimental values are in good agreement with the predicted ones.  相似文献   

8.
Short- and long-range liquid structures of [C(n)mIm(+)][TFSA(-)] with n = 2, 4, 6, 8, 10, and 12 have been studied by high-energy x-ray diffraction (HEXRD) and small-angle neutron scattering (SANS) experiments with the aid of MD simulations. Observed x-ray structure factor, S(Q), for the ionic liquids with the alkyl-chain length n > 6 exhibited a characteristic peak in the low-Q range of 0.2-0.4 A?(-1), indicating the heterogeneity of their ionic liquids. SANS profiles I(H)(Q) and I(D)(Q) for the normal and the alkyl group deuterated ionic liquids, respectively, showed significant peaks for n = 10 and 12 without no form factor component for large spherical or spheroidal aggregates like micelles in solution. The peaks for n = 10 and 12 evidently disappeared in the difference SANS profiles ΔI(Q) [=I(D)(Q) - I(H)(Q)], although that for n = 12 slightly remained. This suggests that the long-range correlations originated from the alkyl groups hardly contribute to the low-Q peak intensity in SANS. To reveal molecular origin of the low-Q peak, we introduce here a new function; x-ray structure factor intensity at a given Q as a function of r, S(Q) (peak)(r). The S(Q) (peak)(r) function suggests that the observed low-Q peak intensity depending on n is originated from liquid structures at two r-region of 5-8 and 8-15 A? for all ionic liquids examined except for n = 12. Atomistic MD simulations are consistent with the HEXRD and SANS experiments, and then we discussed the relationship between both variations of low-Q peak and real-space structure with lengthening the alkyl group of the C(n)mIm.  相似文献   

9.
The unique physical and chemical properties of room-temperature ionic liquids(RTILs) have recently received increasing attention as solvent alternatives for possible application in the field of nuclear industry, particularly in liquid-liquid separations of radioactive nuclides. We investigated solvent extraction of U(VI) from aqueous solutions into a commonly used ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([C4mim][NTf2]) using trioctylphosphine oxide(TOPO) as an extractant. The effects of contact time, TOPO concentration, acidity, and nitrate ions on the U(VI) extraction are discussed in detail. The extraction mechanism was proposed based on slope analysis and UV-Vis measurement. The results clearly show that TOPO/[C4mim][NTf2] provides a highly efficient extraction of U(VI) from aqueous solution under near-neutral conditions. When the TOPO concentration was 10 mmol/L, the extraction of 1 mmol/L U(VI) was almost complete( 97%). Both the extraction efficiency and distribution coefficient were much larger than in conventional organic solvents such as dichloromethane. Slope analysis confirmed that three TOPO molecules in [C4mim][NTf2] bound with one U(VI) ion and one nitrate ion was also involved in the complexation and formed the final extracted species of [UO2(NO3)(TOPO)3]+. Such a complex suggests that extraction occurs by a cation-exchange mode, which was subsequently evidenced by the fact that the concentration of C4mim+ in the aqueous phase increased linearly with the extraction percent of U(VI) recorded by UV-Vis measurement.  相似文献   

10.
Self aggregation of the ionic liquids, 1-butyl-3-methylimidazolium chloride [C4mim][Cl], 3-methyl-1-octylimidazolium chloride [C8mim][Cl], 1-butyl-3-methylimidazolium tetrafluoroborate [C4mim][BF4], N-butyl-3-methylpyridinium chloride [C4mpy][Cl], in aqueous solution has been investigated through 1H nuclear magnetic resonance (NMR) and steady-state fluorescence spectroscopy. Aggregation properties were determined by application of mass action theory to the concentration dependence of 1H NMR chemical shifts. Aggregation properties showed fairly good agreement with the previously reported results obtained from small angle neutron scattering, conductivity, and surface tension measurements. A detailed analysis of chemical shifts of water and various protons in ILs has been employed to probe the aggregate structure. Fluorescence spectroscopy provided important information about the critical aggregation concentration (cac) and the microenvironment of the aggregates. We could also observe a break point quite consistent with that of 1H NMR and fluorescence spectroscopy at cac from the concentration dependence of refractive index measurements. Standard free energies of aggregation DeltaGom of various ILs derived using the refractive index/concentration profiles were found comparable to those of classical ionic surfactants.  相似文献   

11.
The effect of adding an alcohol ethoxylate nonionic surfactant (C(18)E(18)) to aqueous solutions of a cationic surfactant, erucyl bis(hydroxyethyl) methylammonium chloride (EHAC,CH(3)(CH(2))(7)(CH)(2)(CH(2))(12)N(+)-(CH(2)CH(2)OH)(2)CH(3)Cl(-)), was studied using small-angle neutron scattering (SANS), steady-state rheology, and cryo-transmission electron microscopy (Cryo-TEM). This cationic surfactant has the ability to self-assemble into giant wormlike micelles in the presence of an electrolyte, such as KCl. In salt-free solutions, the mixture of the two surfactants gave rise to spherical micelles. The scattering curves obtained were fitted with a polydisperse core-shell model combined with a Hayter Penfold potential. The inner and outer radii were found to be dependent on the surfactant ratio. In the presence of KCl, mixed wormlike micelles were formed. However, further addition of C(18)E(18) promoted the breaking of the micellar worms with the appearance of a structure peak in the scattering curves. In addition, it was found that the low shear viscosity is decreased upon addition of the alcohol ethoxylate nonionic surfactant. These findings are in good qualitative agreement with the Cryo-TEM images. The results show that the addition of the nonionic surfactant to the system is a method of controlling the worm length.  相似文献   

12.
We determined the vapor pressures of aqueous solutions of 1-ethyl-3-methylimidazolium ([C 2mim])-based ionic liquids (IL) with counteranions, tetrafluoroborate (BF 4 (-)), trifluoromethanesulfonate (OTF (-)), and iodide (I (-)). Because in literature the evidence is accumulating and pointing to the fact that ionic liquid ions do not dissociate in aqueous media for the most of the concentration range, we analyzed the vapor pressure data on the basis of binary mixture, and the excess chemical potentials of each component were calculated. From these, the intermolecular interactions in terms of excess chemical potential and hence the concentration fluctuations were evaluated. Though any further discussion into the mixing schemes of the mixture awaits the excess partial molar enthalpy and hence the excess partial molar entropy data, the net interaction in terms of excess chemical potential indicates that the affinity of each IL is ranked in the descending order [C 2mim]I > [C 2mim]OTF > [C 2mim]BF 4. This is consistent with our earlier findings that [C 2mim] (+) is modestly amphiphilic with almost equal hydrophobicity and hydrophilicity, I (-) is a hydrophile, and OTF (-) is amphiphilic, and BF 4 (-) is believed to be strongly hydrophobic.  相似文献   

13.
Three room temperature ionic liquids (RTILs), viz. C(4)mim(+)·PF(6)(-), C(6)mim(+)·PF(6)(-) and C(8)mim(+)·PF(6)(-), were evaluated as diluents for the extraction of Am(III) by N,N,N',N'-tetraoctyl diglycolamide (TODGA). At 3 M HNO(3), the D(Am)-values by 0.01 M TODGA were found to be 102, 34 and 74 for C(4)mim(+)·PF(6)(-), C(6)mim(+)·PF(6)(-) and C(8)mim(+)·PF(6)(-), respectively. The extraction of Am(III) decreased with increasing feed acidity for all three diluents, indicating an ion exchange mechanism for the extraction. The stoichiometry of the extracted species suggested that two TODGA molecules were associated with Am(III) during the extraction for all three RTILs and the conditional extraction constants have been determined. The D(M)-values for different metal ions followed the order: 75 (Am(III)) > 30.7 (Pu(IV)) > 3.9 (Np(IV)) > 1.19 (Pu(VI)) > 0.52 (U(VI)) > 0.12 (Cs(I)) > 0.024 (Sr(II)). The distribution behaviour of Am(III) was also studied with a recently synthesized calix[4]arene-4DGA (C4DGA) extractant dissolved in C(8)mim(+)·PF(6)(-). Using this extractant diluent combination, the D(Am)-value was 194 at 3 M HNO(3) using 5 × 10(-5) M C4DGA, suggesting a very high distribution coefficient at very low extractant concentrations. The stoichiometry of the extracted species containing Am was found to be 1:2 (M:L) in C(8)mim(+)·PF(6)(-). The thermodynamics of the extraction was also studied for both extractants in C(8)mim(+)·PF(6)(-). The use of RTILs gives rise to significantly improved extraction properties than the commonly used n-dodecane and an unusual increase in separation factor values was seen for the first time which can lead to selective separation of Am from wastes containing a mixture of U, Pu and Am.  相似文献   

14.
The change in the morphology of a series of dicationic gemini surfactants C(14)H(29)(CH(3))(2)N(+)-(CH(2))(s)-N(+)(CH(3))(2)C(14)H(29), 2Br(-) (14-s-14; s=4-6) on their interaction with inorganic (KBr, KNO(3), KSCN) and organic salts (NaBenz, NaSal) have been thoroughly investigated by means of (1)H NMR spectral analysis and the results are well supported by viscosity measurements. The presence of salt counterions results in structural transition (spherical to nonspherical) of gemini micelles in aqueous solution. With an increase in salt concentration all the three gemini surfactants showed changes in their aggregate morphology. This change is dependent on the nature and size of the added counterion. The effect of inorganic counterions on the micellar growth is observed to follow the Hofmeister series (Br(-) < NO(3)(-) < SCN(-)). The roles of organic counterions are discussed on the basis of probable solubilization sites of the substrate molecule in the gemini micelles, showing more growth in case of Sal(-) than Benz(-). The results are confirmed in terms of the obtained values of chemical shift (δ), line width at half height (lw), and relative viscosity (η(r)). Also, the growth of micelles was most pronounced for the gemini surfactant with the shortest spacer (s=4). This was attributed to the unique molecular structure of gemini surfactant micelles having flexible polymethylene spacer chain linking the twin polar headgroups.  相似文献   

15.
The structure and stoichiometry of the lanthanide(III) (Ln) complexes with the ligand 2-thenoyltrifluoroacetone (Htta) formed in a biphasic aqueous room-temperature ionic liquid system have been studied by complementary physicochemical methods. Equilibrium thermodynamics, optical absorption and luminescence spectroscopies, high-energy X-ray scattering, EXAFS, and molecular dynamics simulations all support the formation of anionic Nd(tta)4(-) or Eu(tta)4(-) complexes with no water coordinated to the metal center in 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (C4mim+Tf2N(-)), rather than the hydrated, neutral complexes, M(tta)(3)(H2O)n)(n = 2 or 3), that form in nonpolar molecular solvents, such as xylene or chloroform. The presence of anionic lanthanide complexes in C4mim+Tf2N(-) is made possible by the exchange of the ionic liquid anions into the aqueous phase for the lanthanide complex. The resulting complexes in the ionic liquid phase should be thought of as weak C4mim+Ln(tta)4(-) ion pairs which exert little influence on the structure of the ionic liquid phase.  相似文献   

16.
The effects of low temperature and ionic strength on water encapsulated within reverse micelles were investigated by solution NMR. Reverse micelles composed of AOT and pentane and solutions with varying concentrations of NaCl were studied at temperatures ranging from 20 degrees C to -30 degrees C. One-dimensional (1)H solution NMR spectroscopy was used to monitor the quantity and structure of encapsulated water. At low temperatures, e.g., -30 degrees C, reverse micelles lose water at rates that are dependent on the ionic strength of the aqueous nanopool. The final water loading (w0 = [water]/[surfactant]) of the reverse micelles is likewise dependent on the ionic strength of the aqueous phase. Remarkably, water resonance(s) at temperatures between -20 degrees C and -30 degrees C displayed fine structure indicating the presence of multiple transient water populations. Results of this study demonstrate that reverse micelles are an excellent vehicle for studies of confined water across a broad range of conditions, including the temperature range that provides access to the supercooled state.  相似文献   

17.
[C(6)H(6)NO](+) ions, in two isomeric forms involved as key intermediates in the aromatic nitrosation reaction, have been produced in the gas phase and analyzed by IR multiple photon dissociation (IRMPD) spectroscopy in the 800-2200 cm(-)(1) fingerprint wavenumber range, exploiting the high fluence and wide tunability of a free electron laser (FEL) source. The IRMPD spectra were compared with the IR absorption spectra calculated for the optimized structures of potential isomers, thus allowing structural information on the absorbing species. [C(6)H(6)NO](+) ions were obtained by two routes, taking advantage of the FEL coupling to two different ion traps. In the first one, an FT-ICR mass spectrometer, a sequence of ion-molecule reactions was allowed to occur, ultimately leading to an NO(+) transfer process to benzene. The so-formed ions displayed IRMPD features characteristic of a [benzene,NO](+) pi-complex structure, including a prominent band at 1963 cm(-)(1), within the range for the N-O bond stretching vibration of NO (1876 cm(-)(1)) and NO(+) (2344 cm(-)(1)). A quite distinct species is formed by electrospray ionization (ESI) of a methanol solution of nitrosobenzene. The ions transferred and stored in a Paul ion trap showed the IRMPD features of substituent protonated nitrosobenzene, the most stable among conceivable [C(6)H(6)NO](+) isomers according to computations. It is noteworthy that IRMPD is successful in allowing a discrimination between isomeric [C(6)H(6)NO](+) species, whereas high-energy collision-induced dissociation fails in this task. The [benzene,NO](+) pi-complex is characterized by IRMPD spectroscopy as an exemplary noncovalent ionic adduct between two important biomolecular moieties.  相似文献   

18.
Salts of the C(3v) symmetric hydronium ion, H(3)O(+), have been obtained in the weakly basic solvents benzene, dichloromethane, and 1,2-dichloroethane. This is made possible by using carborane counterions of the type CHB(11)R(5)X(6)(-) (R = H, Me, Cl; X = Cl, Br, I) because they combine the three required properties of a suitable counterion: very low basicity, low polarizability, and high chemical stability. The existence of the H(3)O(+) ion requires the formation of three more-or-less equivalent, medium-to-strong H-bonds with solvent or anion bases. With the least basic anions such as CHB(11)Cl(11)(-), IR spectroscopy indicates that C(3v) symmetric trisolvates of formulation [H(3)O(+) .3Solv] are formed with chlorocarbon solvents and benzene, the latter with the formation of pi bonds. When the solvents and anions have comparable basicity, contact ion pairs of the type [H(3)O(+).nSolv.Carborane] are formed and close to C(3v) symmetry is retained. The conditions for the existence of the H(3)O(+) ion are much more exacting than previously appreciated. Outside of the range of solvent basicity bounded at the lower end by dichloromethane and the upper end by tributyl phosphate, and with anions that do not meet the stringent requirements of weak basicity, low polarizability of high chemical stability, lower symmetry species are formed. One H-bond from H(3)O(+) to the surrounding bases becomes stronger than the other two. The distortion from C(3v) symmetry is minor for bases weaker than dichloromethane. For bases stronger than tributyl phosphate, H(2)O-H(+)-B type species are formed that are more closely related to the H(5)O(2)(+) ion than to H(3)O(+). IR data allow criteria to be defined for the existence of the symmetric H(3)O(+) ion. This includes a linear dependence between the frequencies of nu(max)(OH) and delta(OH(3)) within the ranges 3010-2536 cm(-1) for nu(max)(OH) and 1597-1710 cm(-1) for delta(OH(3)). This provides a simple way to assess the correctness of the formulation of the proton state in monohydrated acids. In particular, the 30-year-old citation classic of the IR spectrum believed to arise from H(3)O(+) SbCl(6)(-) is re-interpreted in terms of (H(2)O)(x)().HSbCl(6) hydrates. The correctness of the hydronium ion formulation in crystalline H(3)O(+)A(-) salts (A(-) = Cl(-), NO(3)(-)) is confirmed, although, when A(-) is a fluoroanion, distortions from C(3)(v)() symmetry are suggested.  相似文献   

19.
The structures of the complex of 2,2'-(methylimino)bis(N,N-dioctylacetamide) (MIDOA) with M(VII)O(4)(-) (M = Re and Tc), which were prepared by liquid-liquid solvent extraction, were investigated by using (1)H nuclear magnetic resonance (NMR), extended X-ray absorption fine structure (EXAFS), and infrared (IR) spectroscopy. The (1)H NMR spectra of the complex of MIDOA with Re(VII)O(4)(-) prepared in the organic solution suggest the transfer of a proton from aqueous to organic solution and the formation of the H(+)MIDOA ion. The EXAFS spectra of the complexes of H(+)MIDOA with Re(VII)O(4)(-) and Tc(VII)O(4)(-) show only the M-O coordination of the aquo complexes, suggesting that the chemical state of M(VII)O(4)(-) was unchanged during the extraction process. The results from (1)H NMR and EXAFS, therefore, provide evidence of M(VII)O(4)(-)···H(+)MIDOA complex formation in the organic solution. The IR spectra of Re(VII)O(4)(-)···H(+)MIDOA and Tc(VII)O(4)(-)···H(+)MIDOA were analyzed based on the structures and the IR spectra that were calculated at the B3LYP/cc-pVDZ level. Comparison of the observed and calculated IR spectra demonstrates that an intramolecular hydrogen bond is formed in H(+)MIDOA, and the M(VII)O(4)(-) ion interacts with H(+)MIDOA through multiple C-H(n)···O hydrogen bonds.  相似文献   

20.
The extraction of uranyl from acidic (HNO(3)) aqueous solutions toward an ionic liquid phase, C(1)-C(4)-imTf(2)N (1-methyl,3-butylimidazolium Tf(2)N), has been investigated as a function of initial acid concentration and ligand concentration for two different extracting moieties: a classical malonamide, N,N'-dimethyl-N,N'-dibutylmalonamide (DMDBMA) and a functionalized IL composed of the Tf(2)N(-) anion and an imidazolium cation on which a malonamide pattern has been grafted (FIL-MA). The extraction mechanism, as demonstrated through the influence of added C(1)-C(4)-imCl or added LiTf(2)N in the aqueous phase, is slightly different between the DMDBMA and FIL-MA extracting agents. Modeling of the extraction data evidences a double extraction mechanism, with cation exchange of UO(2)(2+)versus 2 H(+) for DMDBMA or versus C(1)-C(4) -im(+) and H(+) for FIL-MA at low acidic values, and through anion exchange of [UO(2)(NO(3))(3)](-)versus Tf(2)N(-) for both ligands at high HNO(3) concentrations. The FIL-MA molecule is more efficient than its classical DMDBMA parent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号