首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Industrial data storage application based on single-molecule magnets (SMMs) necessitates not only strong magnetic remanence at high temperatures but also requires the implementation of SMMs into a solid material to increase their durability and addressability. While the understanding of the relationship between the local structure of the metal and the resulting magnetic behavior is well understood in molecular systems, it remains challenging to establish a similar understanding for magnetic materials, especially for isolated lanthanide sites on surfaces. For instance, dispersed Dy(III) ions on silica prepared via surface organometallic chemistry exhibit slow magnetic relaxation at low temperatures, but the origin of these properties remains unclear. In this work, we modelled ten neutral complexes with coordination numbers (CN) between three and six ([Dy(OSiF3)3(O(SiF3)2)CN-3]) representing possible surface sites for dispersed Dy(III) ions and investigated their SMM potential via ab initio CASSCF/RASSI-SO calculations. Detailed analysis of the data shows the strong influence of the spatial position of the anionic ligands while the neutral ligands only play a minor role for the magnetic properties. In particular, a T-shape like orientation of the anionic ligands is predicted to exhibit good SMM properties making it a promising targeted coordination environment for molecular and surface-based SMMs.  相似文献   

2.
Any single molecular magnets (SMMs) perspective for application is as good as its magnetization stability in ambient conditions. Endohedral metallofullerenes (EMFs) provide a solid basis for promising SMMs. In this study, we investigated the behavior of functionalized EMFs on a gold surface (EMF‐L‐Au). Having followed the systems molecular dynamics paths, we observed that the chemically locked inner cluster inside fullerene cage will remain locked even at room temperature due to the ligand‐effect. We have located multiple possible minima with different charge arrangements between EMF‐L‐Au fragments. Remarkably, the charge state of the EMF inner cluster remained virtually constant and so magnetic properties are expected to be untouched. © 2018 Wiley Periodicals, Inc.  相似文献   

3.
Cyano-bridged molecule-based magnetic materials with reduced dimensionality, such as single-molecule magnets (SMMs) and single-chain magnets (SCMs), have attracted great research interest during the last decade. Among the cyano-based molecular precursors with ample coordinating capability, we note the ability of the tricyanometalate to link various metal ions lead to a wide diversity of structural architectures ranging from discrete polynuclear complexes to various one-dimensional (1D) assemblies. Some of them are promising cyano-bridged SMMs and SCMs. The use of capping tridentate organic ligands results in a number of clusters containing di-, tri-, tetra-, penta-, hexa-, octa-, fourteen-nuclear and various 1D metal-cyanide molecular architectures. Here we review the structural topologies of these complexes and their related magnetic properties, highlight typical examples, and point out the main possible directions that remain to be developed in this field. From the crystal engineering point of view, the compounds reviewed here should provide useful information for further design and investigation on this elusive class of cyano-bridged SMMs and SCMs.  相似文献   

4.
Single-molecule magnets (SMMs) have attracted attention due to their potential applications in quantum computation and information storage, and many SMMs have been reported in the past two decades. In this review, we summarize the structures and the magnetic exchange interactions of pyridine alcohol-based SMMs to give a possible relationship between structure and magnetic property, providing information to generate new molecule-based magnetic materials. According to the correlated metal centers, these SMMs are separated into three segments to discuss.  相似文献   

5.
Unlike electronics, which is based on the freedom of the charge of an electron whose memory is volatile, spintronics is based on the freedom of the charge, spin, and orbital of an electron whose memory is non‐volatile. Although in most GMR, TMR, and CMR systems, bulk or classical magnets that are composed of transition metals are used, this Focus Review considers the growing use of single‐molecule magnets (SMMs) that are composed of multinuclear metal complexes and nanosized magnets, which exhibit slow magnetic‐relaxation processes and quantum tunneling. Molecular spintronics, which combines spintronics and molecular electronics, is an emerging field of research. Using molecules is advantageous because their electronic and magnetic properties can be manipulated under specific conditions. Herein, recent developments in [LnPc]‐based multiple‐decker SMMs on surfaces for molecular spintronic devices are presented. First, we discuss the strategies for preparing single‐molecular‐memory devices by using SMMs. Next, we focus on the switching of the Kondo signal of [LnPc]‐based multiple‐decker SMMs that are adsorbed onto surfaces, their characterization by using STM and STS, and the relationship between the molecular structure, the electronic structure, and the Kondo resonance of [TbPc2]. Finally, the field‐effect‐transistor (FET) properties of surface‐adsorbed [LnPc2] and [Ln2Pc3] cast films are reported, which is the first step towards controlling SMMs through their spins for applications in single‐molecular memory and spintronics devices.  相似文献   

6.
林双燕  郭云南  许公峰  唐金魁 《应用化学》2010,27(12):1365-1371
在信息存储和量子计算方面具有广阔应用前景的单分子磁体及相关研究中,应用各向异性显著的稀土离子以期提高单分子磁体自旋翻转能垒的研究倍受关注。 本文综述了稀土单分子磁体的研究进展,并着重介绍了单核、三核及四核镝配合物单分子磁体的磁学性质。  相似文献   

7.
The promising future of storing and processing quantized information at the molecular level has been attracting the study of Single-Molecule Magnets (SMMs) for almost three decades. Although some recent breakthroughs are mainly about the SMMs containing only one lanthanide ion, we believe SMMs can tell a much deeper story than the single-ion anisotropy. Here in this Perspective, we will try to draw a unified picture of SMMs as a delicately coupled spin system between multiple spin centres. The hierarchical couplings will be presented step-by-step, from the intra-atomic hyperfine coupling, to the direct and indirect intra-molecular couplings with neighbouring spin centres, and all the way to the inter-molecular and spin–phonon couplings. Along with the discussions on their distinctive impacts on the energy level structures and thus magnetic behaviours, a promising big picture for further studies is proposed, encouraging the multifaceted developments of molecular magnetism and beyond.

In this Perspective, we draw a unified picture for single-molecule magnets as delicately coupled spin systems, discuss the hierarchical couplings (from intra-atomic to inter-molecular) and their distinctive impacts on the magnetic behaviours.  相似文献   

8.
The study of the magnetic properties of highly anisotropic paramagnetic molecules is an area of intense current research interest. Of these, single-molecule magnets (SMMs) and single-chain magnets (SCMs) showing non-equilibrium magnetization have remained a key topic over the past two decades. The slow magnetization reversals found in SMMs and SCMs are contingent on two requirements: a large ground-state spin forbidding direct quantum transitions of spin reversal, and a series of excited spin levels, due to the anisotropy of the system, which can act as steppingstones for the thermal relaxation of the spin orientations (the Orbach process). In this critical review, the latter requirement, i.e. the existence of magnetic anisotropies in paramagnetic species, is reviewed with the aim of providing clues towards the rational design of molecule-based magnets (100 references).  相似文献   

9.
High-spin molecules with easy-axis magnetic anisotropy show slow magnetic relaxation of spin-flipping along the axis of magnetic anisotropy and are called single-molecule magnets (SMMs). SMMs behave as molecular-size permanent magnets at low temperature and magnetic relaxation occurs by quantum tunneling processes; such molecules are promising candidates for use in quantum devices. We first discuss intramolecular ferromagnetic interactions for preparing high-spin molecules. Second, we determine the magnetic anisotropy for single metal ions with d(n) configurations and discuss how molecular anisotropy arises from single-ion anisotropy of the assembled component metal ions.  相似文献   

10.
In the cone conformation calix[4]arenes possess lower-rim polyphenolic pockets that are ideal for the complexation of various transition-metal centres. Reaction of these molecules with manganese salts in the presence of an appropriate base (and in some cases co-ligand) results in the formation of a family of calixarene-supported [Mn(III)(2)Mn(II)(2)] clusters that behave as single-molecule magnets (SMMs). Variation in the alkyl groups present at the upper-rim of the cone allows for the expression of a degree of control over the self-assembly of these SMM building blocks, whilst retaining the general magnetic properties. The presence of various different ligands around the periphery of the magnetic core has some effect over the extended self-assembly of these SMMs.  相似文献   

11.
Recent studies have shown that mononuclear lanthanide (Ln) complexes can be high-performing single-molecule magnets (SMMs). Recently, there has been an influx of mononuclear Ln alkoxide and aryloxide SMMs, which have provided the necessary geometrical control to improve SMM properties and to allow the intricate relaxation dynamics of Ln SMMs to be studied in detail. Here non-aqueous Ln alkoxide and aryloxide chemistry applied to the synthesis of low-coordinate mononuclear Ln SMMs are reviewed. The focus is on mononuclear DyIII alkoxide and aryloxide SMMs with coordination numbers up to eight, covering synthesis, solid-state structures and magnetic attributes. Brief overviews are also provided of mononuclear TbIII, HoIII, ErIII and YbIII alkoxide and aryloxide SMMs.  相似文献   

12.
李晓磊 《无机化学学报》2019,35(11):1987-1998
与单分子磁体的定义(SMMs)相类似,单分子磁环(SMTs)定义为具有环形磁双稳态的一类分子。该类配合物的特征在于弱耦合磁矩的"涡旋"空间分布导致总磁矩为零,但是分子仍具有环形磁矩。单分子磁环为量子计算和信息存储提供了广阔的应用前景,也可以作为具有磁电耦合效应的多铁材料。自从在[Dy3]分子中首次观察到典型的单分子磁环行为以来,研究人员在合成单分子磁环方面做出了巨大的努力,致力于合成具有环形磁矩的分子以及设法将环形磁矩增强。本文将对近年报道的新兴单分子磁环配合物进行详细地分析讨论,旨在阐明影响环形磁矩排列的因素以及单分子磁环配合物的综合设计策略,指导探索合成具有增强环形磁矩的单分子磁环配合物。  相似文献   

13.
Ever since the first example of a double‐decker complex (SnPc2) was discovered in 1936, MPc2 complexes with π systems and chemical and physical stabilities have been used as components in molecular electronic devices. More recently, in 2003, TbPc2 complexes were shown to be single‐molecule magnets (SMMs), and researchers have utilized their quantum tunneling of the magnetization (QTM) and magnetic relaxation behavior in spintronic devices. Herein, recent developments in LnIII‐Pc‐based multiple‐decker SMMs on surfaces for molecular spintronic devices are presented. In this account, we discuss how dinuclear TbIII‐Pc multiple‐decker complexes can be used to elucidate the relationship between magnetic dipole interactions and SMM properties, because these complexes contain two TbPc2 units in one molecule and their intramolecular TbIII?TbIII distances can be controlled by changing the number of stacks. Next, we focus on the switching of the Kondo signal of TbIII‐Pc‐based multiple‐decker SMMs that are adsorbed onto surfaces, their characterization using STM and STS, and the relationship between the molecular structure, the electronic structure, and the Kondo resonance of TbIII‐Pc multiple‐decker complexes.

  相似文献   


14.
Dong Shao  Xin‐Yi Wang 《中国化学》2020,38(9):1005-1018
Single‐molecule magnets (SMMs) are paramagnetic molecules that can be magnetized below a certain temperature and have potential applications in high‐density information storage, magnetic qubits, spintronic devices, etc. The discovery of the first SMM, Mn12, opened a new era of molecular magnetism and promoted collaborative researches between chemists and physicists for their exotic quantum as well as classical magnetic properties. In the recent past, great efforts have been made to develop strategies for constructing new SMMs with high energy barriers (Ueff) and blocking temperatures (TB), resulting in great and fast development of SMMs. In this concise review, we highlight the main synthetic approaches and representative results in the design and synthesis of high performance SMMs. We hope to give the readers a basic understanding of SMMs and a snapshot of the representative researches on SMMs from a perspective of synthetic chemists.  相似文献   

15.
Single molecule magnets (SMM) are a class of molecules exhibiting magnetic properties similar to those observed in conventional bulk magnets, but of molecular origin. SMMs have been proposed as potential candidates for several technological applications that require highly controlled thin films and patterns. Here we present an overview of the most important approaches for thin film growth and micro(nano)-patterning of SMM, giving special attention to Mn(12) based molecules. We present both conventional approaches to thin film growth (Langmuir-Blodgett, chemical approach, dip and dry, laser evaporation), patterning (micro-contact printing, deposition on patterned surface, moulding of homogeneous films) and new methods specifically developed for SMM (lithographically controlled wetting, lithographically controlled de-mixing).  相似文献   

16.
The nanostructuring of single-molecule magnets (SMMs) on substrates, in nanotubes and periodic frameworks is highly desired for the future magnetic recording devices. However, the ability to organize SMMs into long-range ordered arrays in these systems is still lacking. Here, we report the incorporation of magnetic (RECl2(H2O)6)+ (RE=rare earths) molecular groups into the framework of an organic metal halide perovskite (OMHP)—(H2dabco)CsCl3. Intriguingly, we show the incorporated rare-earth groups self-organized into long-range ordered arrays that uniformly and periodically distributed in the A sites of OMHP. The ordered (RECl2(H2O)6)+ groups serve as SMMs in the perovskite frameworks, exhibiting large effective magnetic moment, moderate magnetic anisotropy and two-step relaxation behavior. With the additional merit of great structural flexibility and multifunction of OMHPs, the preparation of the first SMMs@OMHP magnetic materials furthers the development of molecular spintronics.  相似文献   

17.
The influence of nuclear spin on the magnetic hysteresis of a single‐molecule is evidenced. Isotopically enriched DyIII complexes are synthesized and an isotopic dependence of their magnetic relaxation is observed. This approach is coupled with tuning of the molecular environment through dilution in an amorphous or an isomorphous diamagnetic matrix. The combination of these approaches leads to a dramatic enhancement of the magnetic memory of the molecule. This general recipe can be efficient for rational optimization of single‐molecule magnets (SMMs), and provides an important step for their integration into molecule‐based devices.  相似文献   

18.
Over the past decade, lanthanide compounds have become of increasing interest in the field of Single Molecule Magnets (SMMs) due to the large inherent anisotropy of the metal ions. Heavy lanthanide metal systems, in particular those containing the dysprosium(III) ion, have been extensively employed to direct the formation of a series of SMMs. Although remarkable progress is being made regarding the synthesis and characterization of lanthanide-based SMMs, the understanding and control of the relaxation dynamics of strongly anisotropic systems represents a formidable challenge, since the dynamic behaviour of lanthanide-based SMMs is significantly more complex than that of transition metal systems. This perspective paper describes illustrative examples of pure dysprosium(III)-based SMMs, published during the past three years, showing new and fascinating phenomena in terms of magnetic relaxation, aiming at shedding light on the features relevant to modulating relaxation dynamics of polynuclear lanthanide SMMs.  相似文献   

19.
《化学:亚洲杂志》2017,12(21):2772-2779
Single‐molecule magnets (SMMs) exhibiting slow relaxation of magnetization of purely molecular origin are highly attractive owing to their potential applications in spintronic devices, high‐density information storage, and quantum computing. In particular, lanthanide SMMs have been playing a major role in the advancement of this field because of the large intrinsic magnetic anisotropy of lanthanide metal ions. Herein, some recent breakthroughs that are changing the perspective of the field are highlighted, with special emphasis on synthetic strategies towards the design of high‐performance SMMs.  相似文献   

20.
Science China Chemistry - Controlling molecular magnetic anisotropy via structural engineering is delicate and fascinating, especially for single-molecule magnets (SMMs). Herein a family of...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号