首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An aqueous solution of 2–12% (vol/vol) tetrahydrofuran (THF) induced the selective aggregation of chlorophyll a (Chl a) to form a novel species, A-685, absorbing near 685 nm. The formation of A-685 was closely correlated with a decrease in water activity of the solution. A Raman spectrum of the Chl a species formed in the presence of 6% THF suggests a unique interaction among Chl a, solvent THF and water molecules to give a stacked aggregate (Chl a.THF.H2O.THF.Chl a). The circular dichroic spectrum of the Chl a species formed in the 6% THF aqueous solution showed an intense signal that had negative and positive wings with about 100-fold larger molar ellipticity for the A-685 than for monomer. However, Chl a', the C10 epimer of Chl a, and chlorophyllide, with a phytyl chain replaced by an ethyl group, did not form A-685 in 6% THF. These clearly indicate that 10-methylcarboxylate and the phytyl chain have a significant role in stabilizing A-685. A possible structure for A-685 is proposed as a novel in vitro model for the P-680 Chl a dimer.  相似文献   

2.
Abstract— The spectra of absorption, fluorescence and excitation of monolayers and thin films containing chlorophyll a together with a carotenoid (cis-β-carotene, trans-β-carotene, fucoxanthin, or zeaxanthin), were measured at — 196°C. The concentration ratios used, (Chl)/(Car), were 6:1, 4:1, 3:1, 2:1, 1:1 and 1:3, and the area densities, 3·70, 2·55, 1·76, 0·71, 0·37 and 0·17 nm2/pigment molecule. In dilute monolayers, (3·70 nm2/molecule), with a constant concentration ratio (Chl)/(Car) = 3:1, evidence of three β-carotene forms, with absorption bands at 460, 500 and 520 nm (C460, C500 and C520), and of a chlorophyll a form with an absorption band at 669–672 (Chl669–672) was found. On increasing the density to 0·2–0·3 nm2/molecule, a conversion of C460 and C520 into C500, was observed, and several more additional (probably more strongly aggregated) chlorophyll a forms appeared, with absorption bands at 672–733 nm. With excess carotene [(Chi)/(Car) = 1:3] the forms C460, C500, C520 and Chl669–672 were present even in the most dense films (0·2–0·3 nm2/molecule). The same was found with other carotenoids: if one of the pigments was in excess, aggregated forms of the other tended to disappear. In the transfer of energy from carotenoids to chlorophyll a, C500 was found to be the main donor. In layers with a concentration ratio (Chl)/(Car) = 3:1, the efficiency of transfer was less than 10 per cent at the lowest density used (3·70 nm2/molecule); it increased to 50 per cent, as the density was increased to 0·20 nm2/molecule. When the relative concentration of the carotenoid was increased to (Chl)/(Car) = 1:1, the efficiency of energy transfer dropped to 25 per cent even at 0·20 nm2/molecule. It seems that the efficiency of energy transfer between carotene molecules (prior to its transfer to chlorophyll a) is low, and effective transfer occurs only between β-carotene and immediately adjacent chlorophyll a molecules.  相似文献   

3.
Abstract— A comparison of the visible absorption and infrared spectra of various chlorophyll-chlorophyll (Chl) and Chi-nucleophile aggregates at room temperature and at low temperatures has been made. The IR data provide structural information indispensable for the interpretation of the visible spectra. As a necessary preliminary, it is shown that Chl a solutions in nonpolar solvents can be prepared by appropriate drying techniques that contain at a conservative estimate ≤ 3 mol % of water (i.e. Chl a/H2O > 30:1). Very dry solutions of Chl a or Pyrochl a(≥ 10 mM) in toluene or methylcyclohexane-isopentane solution show only slight changes in visible spectra on cooling to 77 K. From IR, additional Chl-Chl aggregation occurs on cooling in methylcyclohexane-isopentane but not to a significant extent in toluene. Dilute (10 μM) solutions of Chl a or Pyrochl a in nonpolar solvents form a new absorption peak near 700 nm at low temperatures, which we attribute to traces of water in the solvent or other residual nucleophiles not removed during the Chl purification. Addition of stoichiometric amounts of water increases the size of the ?700 nm peak even in dilute Chl solutions. Chlorophyll a, Pyrochl a, but not pheophytin a are shown to interact with nucleophiles of the general type RXH (where R= H or alkyl, and X = O, N, or S). Such nucleophiles can coordinate to the Mg atom of one Chl molecule by lone pairs on O, N, or S, and hydrogen bond to oxygen donor functions in another Chl molecule. A ?0.1 M solution of Chl a or Pyrochl a in toluene containing 1.5 equivalents of ethanol is converted almost entirely to a species absorbing at ?700 nm at 77 K. Infrared spectroscopy shows conclusively that it is the keto C=O function that is involved in the cross-linking by hydrogen bonding, a conclusion supported by the observation that Pyrochl a forms a very similar red-shifted species at low temperatures, despite the absence of a carbomethoxy C=O function. n-Butylamine and ethanethiol interact in much the same way as does ethanol to form species red shifted to ?700 nm. A variety of possible structures for the low temperature forms is discussed, and the use of these red shifted species as paradigms for photoreaction center Chl is described.  相似文献   

4.
Abstract— Model systems have been prepared in which chlorophyll a (Chl a) and N.N-dimethylmyristamide (DMMA) are adsorbed together in various ratios to particles of polyethylene swollen with undecane. The adsorption is performed by equilibrating the particles with methanol-water solutions of increasing water content. Absorption spectra of the coated particles in viscous suspenions show sharp well-marked bands over much of the composition range examined. With the aid of second derivative spectra. the red absorption band has been resolved into three components. at 661.5. 674 and 680 nm. Fluoresccnce spectra have also been resolved into their principal components with some assistance from comparison with spectra of Chl in undecane solution containing DMMA. At room temperature (295 K) the resolvable components are of monomeric Chl at 670 nm. and of associated species at 681 and 725 nm. Fluorescence at 77 Kis of similar intensity but is distributed differently. in favor of longer-wave components. Corresponding to the 295 K components are emission bands at 675, 683–5 and 735 nm. Othcr components appear under certain conditions: at 695–700 nm when the Chl and DMMA conccntrations are both high, and at 705 nm whcn the ratio of DMMA to Chl is low. If DMMA is absent or at low concentration, much of the Chl exists as an aggregated form absorbing near 741 nm and fluorescing weakly near 760 nm at 77 K. Adsorption isotherms indicate some degree of cooperativity in the binding of Chl and DMMA to the particles. The photoreduction of p-dinitrobenzene by hvdrazobenzene. scnsitized by these particles, has been demonstrated  相似文献   

5.
Highly transparent silica-surfactant nanocomposite films containing photosynthetic pigments have been successfully formed through the solubilization of chlorophyll a (Chl a) into surfactant micelles. The UV-vis absorption spectra indicated that a large amount of Chl a were transformed into pheophytin a in the films. These photosynthetic pigments were well dispersed in the surfactant assemblies and their chlorin rings were exposed to the surface of silica layers. Even under an air atmosphere, the photostability of immobilized pigments was largely improved in comparison with that in a homogeneous Chl a solution. Because both Chl a and pheophytin a molecules are effective for the photosensitive charge separation, the present film system is very suitable for heterogeneous immobilizing media for photosynthetic pigments from the viewpoint of in vitro biomimetic devices for solar energy conversion.  相似文献   

6.
A circular (CD) and linear dichroism (LD) study of the water adducts of the green plant chlorophylls a (Chl a) and b (Chl b) in hydrocarbon solvents 3-methylpentane and paraffin oil is presented. A strong red shift of the Qy-absorption band from 663 to 746 nm (1678 cm?1) is observed as the water adduct of Chl a is formed. The Chl a-water adduct shows a strong, nonconservative CD signal, which is characterized by a positive peak at 748 nm and two negative peaks at 720 and 771 nm. The maximum CD (AL - AR) is only one order of magnitude smaller than the isotropic absorption maximum. We propose that this exceptionally strong signal is the so-called psi-type CD. The LD spectrum was measured in a flow of paraffin oil. The isotropic absorption maximum peaks at 742 nm in paraffin oil, whereas the maximum of the LD signal is at 743 nm. The LD signal is positive over the whole water-adduct absorption band indicating that the transition dipole of the 742 nm transition is preferentially oriented along the long axis of the aggregate. The structure of the Chl b-water adduct is less well defined. The preparations of the Chl b-water adduct are unstable. The Chl b-water adduct absorption band maximum is at 683 nm. The CD signal of the Chl a-water adduct is about 200-fold the CD of the Chl b-water adduct. We could not orient the Chl b-water adducts by flow, which suggests that the adducts are small or disordered.  相似文献   

7.
Abstract— The chlorophyll a fluorescence properties of Gonyaulax polyedra cells before and after transfer from a lightdark cycle (LD) to constant dim light (LL) were investigated. The latter display a faster fluorescence transient from the level ‘I’ (intermediary peak) to ‘D’ (dip) to ‘P’ (peak) than the former (3 s as compared to 10 s), and a different pattern of decline in fluorescence from ‘I’ to ‘D’ and from ‘P’ to the steady state level with no clearly separable second wave of slow fluorescence change, referred to as ‘s' (quasi steady state)→‘M’ (maximum) →‘T’ (terminal steady state). The above differences are constant features of cells in LD and LL, and are not dependent on the time of day. They are interpreted as evidence for a greater ratio of photosystem II/photosystem I activity in cells in LL. After an initial photoadaptive response following transfer from LD to LL, the cell absorbance at room temperature and fluorescence emission spectra at 77 K for cells in LL and LD are comparable. The major emission peak is at 685–688 nm (from an antenna Chl a 680, perhaps Chl a-c complex), but, unlike higher plants and other algae, the emission bands at 696–698 nm (from Chl aII complex, Chl a 685, close to reaction center II) and 710–720 nm (from Chl a1, complexes, Chl a 695, close to reaction center I) are very minor and could be observed only in the fluorescence emission difference spectra of LL minus LD cells and in the ratio spectra of DCMU-treated to non-treated cells. Comparison of emission spectra of cells in LL and LD suggested that, in LL, there is a slightly greater net excitation energy transfer from the light-harvesting peridinin-Chl a (Chl a 670) complex, fluorescing at 675 nm, to the other antenna chlorophyll a complex fluorescing at 685–688 nm, and from the Chl a., complex to the reaction center II. Comparison of excitation spectra of fluorescence of LL and LD cells, in the presence of DCMU, confirmed that cells in LL transfer energy more extensively from the peridinin-Chl a complex to other Chl a complexes than do cells in LD.  相似文献   

8.
The title compound, [Cu(C9H5N2O3)2(C2H6OS)2], consists of octahedrally coordinated CuII ions, with the 3‐oxo‐3,4‐dihydroquinoxaline‐2‐carboxylate ligands acting in a bidentate manner [Cu—O = 1.9116 (14) Å and Cu—N = 2.1191 (16) Å] and a dimethyl sulfoxide (DMSO) molecule coordinated axially via the O atom [Cu—O = 2.336 (5) and 2.418 (7) Å for the major and minor disorder components, respectively]. The whole DMSO molecule exhibits positional disorder [0.62 (1):0.38 (1)]. The octahedron around the CuII atom, which lies on an inversion centre, is elongated in the axial direction, exhibiting a Jahn–Teller effect. The ligand exhibits tautomerization by H‐atom transfer from the hydroxyl group at position 3 to the N atom at position 4 of the quinoxaline ring of the ligand. The complex molecules are linked through an intermolecular N—H...O hydrogen bond [N...O = 2.838 (2) Å] formed between the quinoxaline NH group and a carboxylate O atom, and by a weak intermolecular C—H...O hydrogen bond [3.392 (11) Å] formed between a carboxylate O atom and a methyl C atom of the DMSO ligand. There is a weak intramolecular C—H...O hydrogen bond [3.065 (3) Å] formed between a benzene CH group and a carboxylate O atom.  相似文献   

9.
Demetalation of chlorophyll (Chl) a and its analogs is an important reaction in oxygenic photosynthetic organisms, which produces the primary electron acceptors in photosystem II reaction centers and is crucial in the Chl degradation. From these viewpoints, demetalation reactions of four Chl a analogs, 3,8‐divinyl‐Chl a (DV‐Chl a), 3‐devinyl‐3‐ethyl‐Chl a (mesoChl a), 132‐demethoxycarbonyl‐Chl a (pyroChl a) and protochlorophyll a (PChl a), were kinetically analyzed under weakly acidic conditions, and were compared with that of Chl a. DV‐Chl a exhibited slower demetalation kinetics than did Chl a, whereas demetalation of mesoChl a was faster than that of Chl a. The difference in demetalation kinetics of the three chlorophyllous pigments originates from the electron‐withdrawing ability of the vinyl group as the peripheral substituent compared with the ethyl group. Removal of the electron‐withdrawing and homoconjugating 132‐methoxycarbonyl group in Chl a (Chl a → pyroChl a) accelerated demetalation kinetics by two‐fold. PChl a possessing the porphyrin‐type skeleton exhibited slower demetalation kinetics than Chl a. The structure‐dependent demetalation properties of Chl a analogs will be useful for understanding in vivo Chl demetalation reactions in oxygenic photosynthetic organisms.  相似文献   

10.
Abstract— Heat-induced changes of the characteristics of fluorescence spectra of Anacystis nidulans cells were studied after 39°C-grown cells were heated at 55°C. Heat-treatment of the cells induced no changes in the absorption properties or photosystem I-catalyzed cytochrome oxidation, but induced a dramatic change in the fluorescence characteristics of the cells. The low temperature fluorescence emission spectra of heated cells showed a large increase of fluorescence emission at683–685 nm (F683) and at 695 nm, while the bands at 660 nm (allophycocyanin) and at 718 nm (chlorophyll a of photosystem I) were not affected when the cells were excited with light absorbed by phycobilins. When the cells were heated for various periods, a progressive increase of the intensity of F683 occurred with the loss in oxygen evolution capacity. The increase of the F683 band was observed prior to the increase of the F695 band. Quenching of emission spectra by the addition of quinones indicates that the F683 band emanated mainly from a long wavelength form of allophycocyanin. Excitation spectra of heated cells measured at 77 K showed that light absorbed by phycobilins was effective in exciting F685, F695, and F715 emission. A possible energy distribution pathway in Anacystis nidulans is discussed.  相似文献   

11.
Reaction of mer-[RuCl3(DMSO–S)2(DMSO–O] (1) with pyridine (py) in dichloromethane yields mer-[RuCl3(DMSO–S)(DMSO–O)(py)] (2). A single crystal suitable for X-ray diffraction was obtained by recrystalization with dichloromethane and diethyl ether. X-ray diffraction analysis revealed an unusual case in which two independent molecules (2a and 2b) are present in the asymmetric unit cell. Both molecules have distorted octahedral geometry in which DMSO is bound through oxygen and sulfur. Density functional theory (DFT) calculations were performed for 2a and 2b in gas phase to investigate bonding shown by the two DMSO ligands. Optimizations were done on both DMSO ligands bonded through S, both DMSO ligands bonded through O, one DMSO bonded through O, and the other through S but opposite to the actual molecule. The energy differences of the optimized structures were calculated.  相似文献   

12.
Abstract— Surface and spectral properties of chlorophyll a monolayers were studied at a nitrogen-water interface. Direct spectral analysis of Chl monolayers indicated that compression results in a heterogenous mixture of Chl species. Fourth derivative and difference spectra showed the presence of minor bands at 692, 726 and 748 nm. The state of compression determines the quantity and type of spectral species formed. A Chl monolayer on an acid subphase results in the formation of a long wavelength absorbing species (705 nm) similar to that of pheophytin. The half-band width, optical density/monolayer, and extinction coefficients of Chl monolayers are given. It is concluded that in the monolayer the formation of various aggregated species of Chl can be induced.  相似文献   

13.
The self‐assembly of 1, 0‐phenanthroline (phen) and 1,2,4,5‐benzenetetracarboxylic acid(H4btc) with Ca(NO3)2 gives rise to a two‐dimensional network structure coordination polymer, [Ca(phen)(btc)0.5(H2O)] ( 1 ), which was characterized by elemental analysis, IR spectroscopy, and single‐crystal X‐ray diffraction. This compound is monoclinic, space group C2/c, with Z = 8 in a unit cell with dimensions a = 21.744(3) Å, b = 10.0151(12) Å, c = 14.7122(17) Å, β = 110.2850(10)°. The structure contains one crystallographic unique CaII atom, one phen coordinated molecule and a half of btc4– anion. The phen molecule acts as a didentate ligand chelating with a CaII atom, whereas the btc4– anion acts as a μ6‐bridge linking six different CaII atoms to form a two‐dimensional network with (4, 4) topological structure. The three dimensional stacking structures are formed by C–H ··· O hydrogen bonding and π–π interaction. The thermal stability and fluorescent properties of 1 were investigated. Calcite particles are produced by calcination of compound 1 at 580 °C. The obtained calcite was characterized by XRD and SEM analyses.  相似文献   

14.
Abstract— The use of sodium dodecyl sulfate to dissociate photosynthetic membranes followed by standard fractionation techniques yields chlorophyll-proteins and reaction center complexes with molecular weights of 500,000 or less. Much about the structure and function of photo-synthetic units in vivo can be deduced from the properties of the isolated complexes. The Bchl-protein from green bacteria is approximated by an incompletely filled sphere ? 80 Â in diameter consisting of four identical subunits. The five Bchl molecules in each subunit are 14 to 20Â apart. The related Chl a-proteins from a blue-green alga and various eukaryotic plants may have similar structural characteristics. The Chl a-protein from a blue-green alga contains one molecule of P700 per 60–90 Chl a molecules. The quantum requirement for P700 oxidation is 2.6 or less. The midpoint potential in various preparations ranges from 0.38 V to 0.42 V. Green algae and higher plants yield a Chl a-protein similar to that from the blue-green alga; in addition they yield another Chl-protein (mol. wt. = 2–3×104) which contains an equal amount of Chl a and Chl b. These two Chl-proteins account for most of the chlorophyll in these organisms. Two photosynthetic bacteria (Rhodopseudomonas viridis and Chromatium) yield protein complexes containing Bchl, carotenoid, and bound cytochromes. The reaction center complex from R. viridis contains P960 (Em, 8= 0.39 to 0.42 V), cytochrome 558 (Em,8= 0.33 V) and cytochrome 553 (Em,7=— 0.02 V). Quantum requirements for P960 and C558 oxidation are ?2.2 and 3.0, respectively. Complex A from Chromatium contains Bchl 890, P883, cytochrome 556 (Em,8= 0.34 V) and cytochrome 552 (Em,7=?0.04 V). The quantum requirement for C556 oxidation is about 15. Both high- and low-potential cytochromes can donate electrons to the reaction center chlorophyll present in either complex. This fact supports the idea that only one kind of photochemical reaction center functions in photosynthetic bacteria. An hypothesis about the nature of the photosynthetic unit in purple bacteria is outlined.  相似文献   

15.
The interaction of NO2 with sublimed films ofmeso-tetraphenylporphyrinatozinc was studied by IR and UV-VIS spectroscopy. The π-radical cation (ZnTPP)•+NO2 containing an unpaired electron on HOMO of the A2u symmetry is formed at the first stage of the reaction. The second NO2 molecule attacks themeso-carbon atom to form zinc isoporphyrin with the covalently bound nitro group. The IR data indicate that the NO2 anion is axially coordinated to the central metal atom, and the NO2 group is covalently bonded through the N atom. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 665–668, April, 1998.  相似文献   

16.
Abstract. Chlorophyll-protein complexes enriched in the Photosystem I reaction center chlorophyll (P700) exhibit a fluorescence emission maximum at 696 nm at - 196°C The height of this 696 nm emission relative to the emission at 683 nm from antenna chlorophyll a increases proportionally with the P700 concentration while the total fluorescence yield of the complex decreases. The 696 nm emission could possibly be from an absorbing form of antenna chlorophyll a that may be somewhat enriched along with P700 in Photosystem I fractions. However, evidence resulting from glycerol treatment which appears to decrease the rate of resonance energy transfer between antenna chlorophyll and P700 favors the hypothesis that the emission comes from a photooxidized P700 dimer (Chl+-Chl) absorbing near 690 nm. In turn, this fluorescence evidence provides additional support for the model of a P700 dimer involving exciton interaction. Absorption in the wavelength region of 450 nm specifically excites emission at 696 nm from the P700-chlorophyll complex.  相似文献   

17.
Green crystals of the title compound, C14H14I2O2Te·0.5C2H6OS, space group P32, show twinning by merohedry (class II). The asymmetric unit contains two organotellurium molecules and one dimethyl sulfoxide (DMSO) molecule. The crystal structure displays secondary Te...I and Te...O(DMSO) bonds that lead to [(4‐MeOC6H4)2TeI2]2·DMSO supramolecular units in which the two independent organotellurium molecules are bridged by the DMSO O atom. In addition to these secondary bonds, I...I interactions link translationally equivalent organotellurium molecules to form nearly linear ...I—Te—I...I—Te—I... chains. These chains are crosslinked, forming two‐dimensional arrays parallel to (001). The crystal packing consists of a stacking of these sheets, which are related by the 32 axis. This study describes an unusual dimeric arrangement of X—Te—X groups.  相似文献   

18.
In the title coordination compound, [Cd(C14H8N2O4)(H2O)]n, the CdII cation and the coordinated water molecule lie on a twofold axis, whereas the ligand lies on an inversion center. The CdII center is five‐coordinated in a distorted square‐pyramidal geometry by four carboxylate O atoms from four different 4,4′‐diazenediyldibenzoate (ddb) anions and one water O atom. The three‐dimensional frameworks thus formed by the bridging ddb anions interpenetrate to generate a three‐dimensional PtS‐type network. Additionally, the coordination water molecule and the carboxylate O atom form a hydrogen‐bonding interaction, stabilizing the three‐dimensional framework structure.  相似文献   

19.
Abstract— The action of Triton X-100 upon photosynthetic membranes which are devoid of carotenoids produces a small Photosystem I particle (HP700 particle) which is active in N ADP photoreduction and has a [Chl]/[P700] ratio of 30. The properties of the HP700 particle indicate that it is a reaction center complex which is served by an accessory complex containing the additional light-harvesting chlorophyll of Photosystem I as well as the cytochromes and plastoquinone. When Photosystem II particles obtained by the action of Triton X-100 are further washed with a solution 0.5 M in sucrose and 0.05 M in Tris buffer (pH 8.0), chlorophyll-containing material is released. After centrifugation, the supernatant contains about 1 per cent of the chlorophyll and contains three types of particles which can be separated by sucrose density gradient centrifugation. One of these particles, designated TSF-2b, has the same pigment composition as the original Photosystem II fragment, contains cytochrome 559, and shows Photosystem II activity (DCMU-sensitive diphenylcarbazide-supported photoreduction of 2,6-dichlorophenolindophenol). The other two particles (TSF-2a and TSF-2a′) have a [Chl a]/[Chl b] ratio of 8, have a low concentration of xanthophylls, and show a [Chl]/[Cyt 5591 ratio of about 20. Only the TSF-2a particle is active in the Photosystem II reaction described above. On the basis of these data, it is proposed that the Photosystem II unit consists of a reaction center complex which contains Chl a, Cyt 559, and an acceptor for the photochemical reaction. The reaction center complex would be served by an accessory complex which contains the light-harvesting pigments, Chl a. Chi b, and xanthophyils.  相似文献   

20.
Tandem mass spectrometry (MS/MS) was used to investigate and compare the decompositions of radical cations (M+.), radical anions (M-.), [M + H]+ ions, and [M + Cat]+ ions (Cat = alkali metal ions) of chlorophylls. Included in this study are chlorophyll a, chlorophyll b, bacteriochlorophyll a, chlorophyll a allomers, and the corresponding pheophytins. Fast atom bombardment of chlorophyll a produces abundant M+. ions, which decompose metastably and upon collisional activation to give fragment ions from losses of the phytyl chain and the β-keto group of ring V. In addition, previously unreported charge-remote fragmentations are useful for identification of branch points on the phytyl chain. Collisional activation of [M + Cat]+ ions produces fragment ions that are complementary to those of the M+ and are used to examine the intrinsic gas-phase reactivity of metal ions and chlorophylls. Peripheral metal ion attachment in chlorophyll a in the gas phase is suggested to be at C-9, and the β-keto ester group at C-10, of ring V. Examination of decompositions of chlorophyll dimers suggests that in the gas phase the interaction between monomers involves bonding of the Mg atom of one chlorophyll a molecule and the C-9 carbonyl oxygen of the other, which was also suggested for chlorophyll a dimers in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号