首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 108 毫秒
1.
聚N-异丙基丙烯酰胺(PNIPAm)交联温敏纳米纤维膜作为一种相变温度易于控制的新兴响应性材料,克服了传统PNIPAm块状水凝胶的生产成本高、响应速率慢和PNIPAm非交联温敏纳米纤维耐水性差的缺点,受到广泛研究并应用于智能开关、温度致动器、水油分离、药物、细胞控制释放和伤口敷料等领域。形貌稳定性和快速响应性是温敏纳米纤维膜在重复体积变化过程中最大的挑战,同时也作为评价PNIPAm温敏纳米纤维膜的实用性最重要指标引起了人们广泛的关注。本文全面综述了PNIPAm温敏纳米纤维膜近二十年来国内外的突破性进展和非交联作用下PNIPAm温敏纳米纤维膜的形貌变化和响应性,重点综合分析了物理和化学交联中交联反应类型、交联度、交联时间和交联分子量对PNIPAm温敏纳米纤维膜的形貌稳定性和响应行为的影响,为之后纤维膜的交联处理提供了理论支持,并对PNIPAm温敏纳米纤维膜的发展及应用前景进行了展望。  相似文献   

2.
反相乳液共聚合制备两性丙烯酰胺共聚物的研究   总被引:3,自引:0,他引:3  
采用Span80-Tween80复合乳化剂和AIBA引发剂,进行丙烯酸钠(NaAA)/丙烯酰胺(AM)/丙烯酰氧基乙基三甲基氯化铵(DAC)反相乳液共聚合.研究了聚合温度、引发剂用量、单体浓度、共聚单体中DAC和AM含量、乳化剂用量及其HLB值、水/油比和水相pH值等聚合反应工艺条件或参数对聚合反应单体转化率和聚合物特性粘度的影响,聚合物特性粘度随引发剂用量和单体浓度的增大而增大的实验结果证实了该两性丙烯酰胺共聚物反相乳液制备过程中凝胶效应的存在.傅立叶红外光谱组成分析表明了两性丙烯酰胺共聚物的成功合成,扫描电镜观测乳胶粒粒径范围在0.6~8.0μm.  相似文献   

3.
粘度法研究胶态分散凝胶交联过程   总被引:27,自引:0,他引:27  
通过粘度测定方法,研究了部分水解聚丙烯酰胺(HPAM)/ 柠檬酸铝(AlCit) 交联过程中粘度变化的特性.聚合物浓度高的HPAM/AlCit 体系粘度随反应时间的延长而上升,其体系粘度最终高于相同聚合物浓度的HPAM 溶液粘度.聚合物浓度低的HPAM/AlCit 体系粘度随反应时间的延长而下降,其体系粘度低于相同聚合物浓度的HPAM 溶液粘度.HPAM/AlCit 交联体系的聚合物浓度低于临界浓度时,交联反应后形成稀胶态分散凝胶(TCDG) .在实验条件下,临界浓度在150 ~300mg/L 之间.当聚合物浓度于临界浓度和700mg/L之间时,形成浓胶态分散凝胶(CCDG) ;当聚合物浓度高于700mg/L 时,HPAM/AlCit 交联体系形成整体凝胶.  相似文献   

4.
以4,4′-偶氮二[4-氰基戊酰(对-二甲氨基)苯胺](ACPMA)/过氧化二苯甲酰(BPO)为氧化还原引发体系,研究了甲基丙烯酸甲酯(MMA)在N,N-二甲基甲酰胺(DMF)中的聚合及其动力学行为.考察了聚合反应温度、单体浓度、ACPMA浓度和BPO浓度对聚合反应速率和聚合物分子量的影响,测定了反应级数和聚合反应的活化能.结果表明,在一定范围内,聚合反应速率随单体浓度增大、ACPMA浓度增大、BPO浓度增大和反应温度的升高而增大;聚合物分子量随单体浓度的增大而增大,随ACPMA浓度的增大、BPO浓度增大和反应温度的升高而降低.该体系具有氧化还原引发体系的特征,其引发MMA的聚合速率方程为Rp=K[ACPMA]0.57  相似文献   

5.
采用自由基聚合法合成了乙烯基硅纳米粒子-聚丙烯酸(VSNPs-PAA)双重交联复合水凝胶,考察了交联剂、引发剂、单体以及p H值、温度、盐溶液等对水凝胶溶胀行为的影响。结果表明,引发剂浓度为0.08%,交联剂浓度为0.1%,单体浓度为80%时,合成的水凝胶溶胀性能最大,吸水率达到5000%以上;该水凝胶不仅具有p H值敏感性和p H值变化下良好的反复性,而且在p H4的酸性溶液中表现出温度敏感性,其溶胀率随温度的升高而增大;水凝胶的溶胀率随着盐溶液浓度的增大而减小。  相似文献   

6.
结合大分子自组装和原位自由基聚合方法,采用油溶性引发剂偶氮二异丁腈(AIBN),在聚(ε-已内酯)(PCL)纳米粒子表面引发聚合单体N-异丙基丙烯酰胺(NIPAM)和交联剂亚甲基双(丙烯酰胺)(MBA),制备得到了核-壳结构的PCL/PNIPAM聚合物纳米微球.系统研究了单体和交联剂用量、壳层目标交联度、初始PCL/DMF溶液的浓度及引发剂AIBN含量4个反应参数对核-壳结构PCL/PNIPAM纳米微球的PNIPAM壳层得率、微球尺寸、温敏性能及电镜形貌的影响.结果表明,在制备核-壳结构PCL/PNIPAM纳米微球的反应过程中,PCL粒子表面的聚合和水中的聚合二者之间相互竞争.适当增加引发剂AIBN的添加量,有利于制备得到核/壳比例可控的PCL/PNIPAM纳米微球;交联剂MBA较高的反应活性导致形成了非均匀交联的PNIPAM壳层.  相似文献   

7.
RAFT聚合合成高分子量嵌段聚合物   总被引:1,自引:0,他引:1  
以合成高分子量聚合物为目标,以苯基二硫代乙酸-1-苯基乙酯(PEPDTA)作为RAFT试剂,研究引发剂的种类(偶氮二异丁腈(AIBN)、1-1′-偶氮环己腈(ACC))、用量及聚合温度对苯乙烯/丙烯酸丁酯RAFT共聚合过程和聚合物结构的影响.结果发现,由于体系中RAFT浓度很低,相应的引发剂浓度要比传统自由基聚合低得多,只有采用较高的聚合温度和低分解速率常数的引发剂(ACC),才能制得无活性聚合物分率低(<0.1)、分子量高的聚合物,并进一步得到杂质含量少、分子量分布窄的嵌段聚合物.  相似文献   

8.
乙丙三元胶的功能化研究   总被引:2,自引:0,他引:2  
用马来酸二丁酯(DBM)对乙丙三元胶(EPDM)进行了功能化,在烃链上导入极性基团,以改善EPDM与含极性基团聚合物的相容性.红外光谱表明功能化反应确已发生.用电子顺磁共振波谱仪(ESR)研究了热引发的机理,产物的功能化率由皂化水解反应测定;产物交联程度由凝胶量间接表征;用凝胶渗透色谱法(GPC)表征产物的分子量分布。研究了反应温度、反应时间、单体用量和引发剂用量等对产物功能化率和凝胶量的影响。  相似文献   

9.
聚合物 分散液晶体系的相分离结构对温度依赖性的研究   总被引:2,自引:0,他引:2  
在不同温度下采用紫外光引发相分离法制备了聚合物分散液晶样品.用光学显微镜及扫描电镜研究了样品的相分离结构.采用对样品施加电压观察其微结构轮廓,或测量液晶微粒相变点的简单方法研究了聚合温度对相分离结果的影响.结果表明,在一定温度范围内,随着温度的增高,液晶微粒的平均尺寸趋于减小,而且形成的液晶微粒也逐渐变纯.作者给出了这些测试结果并进行了讨论.  相似文献   

10.
采用等温差示光量热技术(DPC)研究了超支化聚硅氧烷的紫外光固化行为及固化动力学. 探索了引发剂浓度、 光强度、 聚合温度和环境气氛对固化行为的影响规律. 研究结果表明, 增加光引发剂浓度和光强度及提高环境温度均可提高其固化速率和双键最终转化率. 在空气中固化时存在氧阻聚现象, 增大光强度可以显著缩短诱导期. 运用带扩散因子的自催化固化动力学模型研究了其光固化动力学, 计算出特定条件下的光固化动力学参数, 反应总级数约为6—7, 表观活化能为9.95 kJ/mol. 通过超支化聚合物与两种结构类似的低官能度单体光固化行为的对比, 研究了超支化聚合物固化行为与其分子结构的关系, 发现由于超支化大分子的独特结构, 在固化初始阶段便产生凝胶, 因此双键的最终转化率偏低.  相似文献   

11.
通过冷却聚偏氟乙烯 (PVDF) 丙烯碳酸酯 (PC)或PVDF PC LiClO4的溶液 ,制备了数个聚合物凝胶 .实验表明 ,聚合物凝胶的凝胶化时间 (tgel)与凝胶温度、聚合物浓度有关 ,且强烈地依赖于体系中盐的浓度 ,因为盐会缩短体系的tgel.凝胶体系中LiClO4的存在提高了其凝胶熔融温度 (Tgm) ,LiClO4的含量越大 ,相应凝胶的Tgm 越高 .用DSC和落球法所测凝胶的Tgm 有较大的差别 .这说明凝胶中可能存在热稳定性好和热稳定性相对较差的两种不同结构部分 .FT IR的研究结果表明 ,凝胶电解质的各组成 (LiClO4,PC和PVDF)间存在较强的相互作用 .对含盐和不含盐的两类凝胶体系的对比研究表明 ,两者不同的凝胶化现象和Tgm 归因于盐与聚合物或溶剂间的络合作用  相似文献   

12.
交联聚氨酯水分散体的合成   总被引:48,自引:0,他引:48  
将硅氧烷封端的含亲水基团的线性聚氨酯预聚体分散于水中 ,获得稳定的聚氨酯分散体 .由于硅氧基团水解、缩合 ,在分散体粒子内产生扩链交联反应 ,生成了交联水基聚氨酯分散体 .透射电子显微镜研究表明分散体粒径小、分布宽 .扫描电子显微镜研究了成膜结构及成膜性能与粒径的关系 .溶胀实验计算获得的两交联点之间的平均分子量与理论平均分子量相符 .研究还发现此分散体膜在干燥过程中可进一步交联 .膜的水溶胀及机械性能表明 ,此分散体具有极大的工业应用价值 .  相似文献   

13.
Inhomogeneous calcium alginate ion cross-linking gel microspheres,a novel ion absorbent,were prepared by dropping a sodium alginate solution to a calcium chloride solutioin via an electronic droplet generator.Calcium alginate microspheres have uniform particle sizes.a smooth surface and a microporous structure.The electrode probe reveals the inhomogeneous distribution of calcium ions with the highest concentration on the surface,and the lowest concentration in the cores of the spheres.As a novel ion adsorbent,calcium alginate gel microspheres have a lower limiting adsorption mass concentration,a higher enrichment capacity and a higher adsorption capacity for Pb^2 than usual ion exchange resins.The highest percentage of the adsorption is 99.79%.The limiting adsorption mass concentration is 0.0426mg/L.The adsorption capacity for Pb^2 is 644mg/g,Calcium alginate gel microspheres have a much faster ion exchange velocity than D418 chelating resin and D113 polyacrylate resin.The moving boundary model was employed to interpret the ion exchange kinetics process,which indicates that the ion exchange process is controlled by intraparticle diffusion of adsorbable ions.So the formation of inhomogeneous gel microspheres reduces the diffusion distance of adsorbable ions within the spheres and enhances the ion exchange velocity.Alginate has a higher selectivity for pb^2 than for Ca^2 and the selectivity coefficient KCa^Pb is 316. As an ion cross-linking gel,calcium alginate inhomogeneous microspheres can effectively adsorb heavy metal Pb^2 at a higher selectivity and a higher adsorption velocity.It is a novel and good ion adsorbent.  相似文献   

14.
The influence of molecular topology on the structural and dynamic properties of polymer chain in solution with ring structure, three-arm branched structure, and linear structure are studied by molecular dynamics simulation. At the same degree of polymerization (N), the ring-shaped chain possesses the smallest size and largest diffusion coefficient. With increasing N, the difference of the radii of gyration between the three types of polymer chains increases, whereas the difference of the diffusion coefficients among them decreases. However, the influence of the molecular topology on the static and the dynamic scaling exponents is small. The static scaling exponents decrease slightly, and the dynamic scaling exponents increase slightly, when the topology of the polymer chain is changed from linear to ring-shaped or three-arm branched architecture. The dynamics of these three types of polymer chain in solution is Zimm-like according to the dynamic scaling exponents and the dynamic structure factors.  相似文献   

15.
丙烯酰胺双水相聚合体系稳定性研究   总被引:11,自引:0,他引:11  
通过浊点滴定法测定了不同温度下PAAmPEGH2O双水相体系相图,发现分相浓度随着温度的升高先增后降,55℃时分相浓度最低.双水相聚合体系微观结构显示,分散相以砾状液滴形式均匀分散在连续相中.研究了聚合过程中聚合体系粘度的变化,以及聚合温度、分散介质、单体、引发剂及乳化剂等对聚合体系最终粘度的影响,聚合体系最终粘度在一定范围内随分散介质和单体浓度增加变化不大,但是超过某一浓度后聚合体系粘度急剧增加;聚合体系中加入少量乳化剂对体系粘度影响不大,但加入大量乳化剂后体系稳定性变差,聚合体系粘度急剧增加;聚合体系最终粘度随着聚合温度升高先降后增,与相图的预测结果一致.  相似文献   

16.
β-CD对SDS胶束生成与特性的影响   总被引:1,自引:0,他引:1  
通过胶束的扩散系数D、聚集数N和β-CD在SDS胶束与水连续相间的分配系数P的测定,研究了β-CD对SDS胶束特性的影响.结果表明,β-CD浓度较小时,随着β-CD的加入,其在SDS胶束相中的分配增大,胶束的扩散系数D与聚集数N均降低.β-CD浓度较大时,其在水连续相中的分配增加,对SDS胶束的扩散系数D与聚集数N的影响显著降低.SDS浓度小于第一CMC,β-CD与SDS单体形成1∶1的包合物;SDS浓度大于第一CMC,β-CD与SDS形成1:8的混合球形胶束.  相似文献   

17.
聚丙烯酰胺(PAAm)和聚乙二醇(PEG)两种水溶液混合时能形成双水相体系,其中上层为PEG富集相,下层为PAAm和PEG的混合相.用凝胶渗透色谱(GPC)法和浊度滴定法研究了PAAm-PEG-H2O双水相体系的相图,结果表明,随着PEG分子量的升高,体系的分相浓度下降.在PAAm-PEG20000-H2O体系中,随着体系温度升高,分相浓度先下降后升高,55℃时分相浓度最低.丙烯酰胺(AAm)单体能在两相中发生相分配,分配系数随着PAAm浓度和平衡温度的增加而增大,随着PEG浓度的增加而下降.  相似文献   

18.
氧气在聚丙烯内吸附和扩散的分子模拟   总被引:3,自引:0,他引:3  
采用巨正则Monte Carlo和分子动力学模拟相结合的方法研究了氧气在不同聚合度的聚丙烯内的吸附和扩散. 模拟结果表明, 随聚丙烯聚合度的增加, 聚丙烯对氧气的吸附量逐渐增加, 而氧气在聚丙烯内的扩散系数减小; 当聚合度增大到一定程度时, 吸附量和扩散系数都趋于一稳定值. 随温度的升高, 氧气在聚丙烯内的吸附量减少, 而扩散系数增大. 本文还应用自由体积理论探讨了氧气在聚合物内扩散的机理, 发现氧气在聚丙烯内以空穴形式存在的自由体积之间扩散, 即氧气先在一个空穴内不停振动, 然后通过聚丙烯链段运动形成的通道跳跃到下一个空穴来完成扩散. 结果表明, 较高聚合度的聚合物材料在常温及低温下使用对于其在食品包装材料中的应用是有利的, 这为食品包装材料行业相关产品的应用开发提供了一定的指导和依据.  相似文献   

19.
张英  孔力 《色谱》2001,19(1):5-8
 采用甲基丙烯酸甲酯 (MMA)或MMA 亚乙基二甲基丙烯酸酯 (EDMA)在硅胶表面聚合的方法 ,制备生成了新型高分子覆盖型硅胶填料C或D。借助红外光谱、元素分析、尺寸排阻色谱和反相液相色谱分析对反应过程、覆盖程度、交联剂的影响和填料的色谱保留行为进行了评价和讨论。结果显示 ,在合成时可以通过控制聚合单体的量控制生成高分子层的厚度 ,而合成中加入交联剂可以改变填料表面的微孔构造。通过考察这种色谱填料的疏水性和对芳香族化合物的分离性能 ,认为其柱效和分离效果接近C18填料的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号