首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-performance liquid chromatographic assay has been developed and validated for the determination of centbutindole and its hydroxy metabolite in serum. The method involves extraction of serum samples with diethyl ether at pH greater than 8, back-extraction into 0.5 M hydrochloric acid and finally again with diethyl ether after addition of 2 M potassium hydroxide. Separation was accomplished by reversed-phase high-performance liquid chromatography on a cyano column with an acetonitrile-phosphate buffer system. The recovery of centbutindole and its metabolite was always greater than 80%. Calibration curves were linear over the concentration range 0.25-5 ng/ml for centbutindole and 0.05-1 ng/ml for the hydroxy metabolite. Although the lower limit of detection was 0.1 ng/ml for centbuntindole and 0.02 ng/ml for the hydroxy metabolite, the reliable limits of quantitation were 0.25 and 0.05 ng/ml, respectively, using 4 ml of serum.  相似文献   

2.
A high-performance liquid chromatographic method with ultraviolet detection at 210 nm for quantitation of bupivacaine and two of its metabolites from plasma and urine is described. The compounds are extracted into n-hexane-isopropanol (5:1), evaporated and the reconstituted residue injected onto a reversed phase C18 column. Standard curves for all compounds were linear (r2 greater than 0.999) in the range 20-2000 ng/ml, with a limit of detection of 10 ng/ml. The inter-day coefficients of variation ranged between 2.7 and 12.2%. The method was applied to analyse bupivacaine and metabolite concentrations in patients on long-term epidural bupivacaine-fentanyl infusions.  相似文献   

3.
A simple and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the determination of fingolimod in human blood. The analyte and internal standard fingolimod-d4 were extracted from 300 μl of human blood using protein precipitation coupled with solid-phase extraction method. The chromatographic separation was achieved with a Kinetex biphenyl column (100 × 4.6 mm, 2.6 μm) under isocratic conditions at the flow rate of 0.8 ml/min and column temperature was maintained at 45°C. The detection of analyte and internal standard was carried out by tandem mass spectrometry, operated in positive ion and multiple reaction monitoring acquisition mode. The method was fully validated for its selectivity, precision, accuracy, linearity, stability, detection and quantification limit. The extraction recovery of fingolimod in human blood ranged from 98.39 to 99.54%. The developed method was linear over the concentration range of 5–2500 pg/ml with a detection limit of 1 pg/ml. The developed method was validated and successfully applied for pharmacokinetic study after oral administration of fingolimod capsules.  相似文献   

4.
In this study, a sensitive and selective method based on liquid chromatography combined with diode array and tandem mass spectrometry detection (LC-DAD-MS/MS) was developed for the simultaneous quantitative determination of fenofibric acid, pravastatin and its main metabolites in human plasma. In this method, an automated solid-phase extraction (SPE) on disposable extraction cartridges (DECs) is used to isolate the compounds from the biological matrix and to prepare a cleaner sample before injection and analysis in the LC-DAD-MS/MS system. On-line LC-DAD-MS/MS system using an atmospheric pressure ionization (TurboIonSpray) was then developed for the simultaneous determination of pravastatin, 3-hydroxy isomeric metabolite (3-OH metab), pravalactone and fenofibric acid. The separation is obtained on an endcapped dodecyl silica based stationary phase using a mobile phase consisting of a mixture of acetonitrile, methanol and 5mM ammonium acetate solution (30:30:40, v/v/v). Sulindac and triamcinolone were used as internal standards (ISs). The detection of the fenofibric acid and sulindac was achieved by means of a DAD system. The MS/MS ion transitions monitored were m/z 442.2-->269.1, 442.2-->269.1, 424.3-->183.0 and 435.2-->397.2 for pravastatin, 3-OH metab, pravalactone and triamcinolone, respectively. The method was validated regarding stability, selectivity, extraction efficiency, response function, trueness, precision lower limit of quantitation and matrix effect. The limits of quantitation (LOQs) were around 0.50 ng/ml for pravastatin, 0.25 ng/ml for 3-OH metab, 0.05 ng/ml for pravalactone and 0.25 microg/ml for fenofibric acid.  相似文献   

5.
A rapid and sensitive method for the simultaneous confirmatory analysis of three forensic most relevant cannabinoids, Delta(9)-tetrahydrocannabinol (THC), 11-hydroxy-Delta(9)-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-Delta(9)-tetrahydrocannabinol (THC-COOH), by means of high-performance liquid chromatography/tandem mass spectrometry (LC/MS/MS) in human plasma was developed and fully validated. Sample clean-up was performed by automated silica-based solid-phase extraction and the separation was carried out using a PhenylHexyl column (50 x 2 mm i.d., 3 micro m) and acetonitrile-5 mM ammonium acetate gradient elution. Data were acquired with an API 3000 LC/MS/MS system equipped with a turboionspray interface and triple quadrupole mass analyzer using positive electrospray ionization and multiple reaction monitoring. Two MS/MS transitions for each substance were monitored and deuterated analogues of analytes were used as internal standards for quantitation. The limit of quantitation was 0.8 ng ml(-1) for THC, 0.8 ng ml(-1) for 11-OH-THC and 4.3 ng ml(-1) for THC-COOH and linearity with a correlation coefficient r(2) = 0.999 was achieved up to 100 ng ml(-1) for THC and 11-OH-THC and 500 ng ml(-1) for THC-COOH. The limits of detection were 0.2 ng ml(-1) for THC, 0.2 ng ml(-1) for 11-OH-THC and 1.6 ng ml(-1) for THC-COOH. The developed LC/MS/MS method was also successfully used for the determination of THC-COOH-glucuronide, the phase II metabolite of THC-COOH.  相似文献   

6.
A sensitive, selective, specific and rapid liquid chromatographic/electrospray ionization tandem mass spectrometric assay method was developed and validated for the simultaneous quantitation of alpha-,beta-arteether (alpha-,beta-AE) and its metabolite alpha-dihydroartemisinin (DHA) in monkey plasma using the propyl ether analogue of beta-arteether (PE) as an internal standard. The method involves a simple two-step liquid-liquid extraction with hexane. The analytes were chromatographed on a C(18) reversed-phase chromatographic column by isocratic elution with methanol-ammonium acetate buffer (pH 4) (92 : 8, v/v) and analysed by mass spectrometry in the multiple reaction monitoring mode. The chromatographic run time was 7 min and the weighted (1/x(2)) calibration curves were linear over the range 0.78-200 ng ml(-1). The method was validated in terms of accuracy, precision, absolute recovery, freeze-thaw stability, bench-top stability and re-injection reproducibility. The limit of detection and lower limit of quantification in monkey plasma were 0.39 and 0.78 ng ml(-1) respectively for all the analytes. The intra- and inter-batch precision and accuracy were found to be well within acceptable limits (<15%). All three analytes were stable even after three freeze-thaw cycles (deviation < 15%). The average absolute recoveries of alpha-,beta-AE, DHA and PE, used as an internal standard, from spiked plasma samples were 85.85 +/- 6.56, 70.10 +/- 7.06, 54.37 +/- 3.39 and 93.90 +/- 6.9%, respectively. The assay method described here could be applied to study the pharmacokinetics of alpha-,beta-AE and DHA in rhesus monkeys.  相似文献   

7.
Abstract

A high performance liquid chromatographic assay has been developed for the estimation of cyclosporine and its four major metabolites in blood and for cyclosporine alone in plasma and urine samples. This assay employs a rapid and very reproducible solid-liquid extraction system. Isocratic chromatographic conditions allow the simultaneous measurement of cyclosporine and its four major metabolites in blood. The method is linear up to 2500 ng/ml and the minimum quantifiable limit for cyclosporine is 30 ng/ml, when 1 ml of sample is analyzed.  相似文献   

8.
9.
A manual-injection liquid chromatographic method using fluorescence detection permitted determination of a new antiasthmatic drug, azelastine, and its desmethyl metabolite extracted from human plasma. Reliable quantitation was achieved to at least 0.3 ng/ml for each analyte. No interference was seen in co-chromatography of sixteen other substances, which were potential co-medications (or their metabolites) as used in standard asthma or allergy treatment.  相似文献   

10.
A simple, sensitive and rapid liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method was developed and validated for simultaneous quantification of olanzapine, clozapine, ziprasidone, haloperidol, risperidone, and its active metabolite 9-hydroxyrisperidone, in rat plasma using midazolam as internal standard (IS). The analytes were extracted from rat plasma using a single step liquid-liquid extraction technique. The compounds were separated on a Waters Atlantis dC-18 (30 mm x 2.1 mm i.d., 3 microm) column using a mobile phase of acetonitrile/5 mM ammonium formate (pH 6.1 adjusted with formic acid) with gradient elution. All of the analytes were detected in positive ion mode using multiple reaction monitoring (MRM). The method was validated and the specificity, linearity, lower limit of quantitation (LLOQ), precision, accuracy, recoveries and stability were determined. LLOQ was 0.1 ng/mL and correlation coefficient (R(2)) values for the linear range of 0.1-100 ng/mL were 0.997 or greater for all the analytes. The intra-day and inter-day precision and accuracy were better than 8.05%. The relative and absolute recovery was above 77% and matrix effects were low for all the analytes except for ziprasidone. This validated method has been successfully used to quantify the plasma concentration of the analytes after chronic treatment with antipsychotic drugs.  相似文献   

11.
A high-performance liquid chromatographic method was developed to measure the concentration of brodimoprim and its metabolite, hydroxybrodimoprim, in small volumes of blood, plasma and urine. The procedure involved a simple extraction step with chloroform, followed by chromatographic separation on a short reversed-phase column deactivated for the analysis of basic compounds. The column effluent was monitored by fluorescence (excitation wavelength 290 nm, emission wavelength 340 nm). The recoveries of both compounds were similar in all three biological fluids, and averaged 84 and 72%, respectively. The detection limit for both compounds reached 5 ng/ml. No endogenous compound interfered in the assay. The linearity of the method and its within- and between-day precision were analytically satisfactory.  相似文献   

12.
A specific and rapid liquid chromatographic/tandem mass spectrometric (LC/MS/MS) method was developed and validated for NNAL, a metabolite of the tobacco-specific nitrosamine metabolite NNK. The metabolite was detected in smokers' urine with a limit of quantitation (LOQ) of 20 pg ml(-1) and a linear range up to 1000 pg ml(-1). The method features a single solid-phase extraction step and MS/MS monitoring following electrospray ionization. Fragmentation pathways for the protonated molecular ion are proposed. The sample preparation is simpler than that for gas chromatographic methods reported in the literature and maintains sensitivity adequate for determining NNAL in smokers' urine. By using enzyme hydrolysis to determine total NNAL in urine, the amount of NNAL-glucuronide was calculated. A standard pooled smokers' urine sample used for development gave values of 176 +/- 8 pg ml(-1) free NNAL and 675 +/- 26 pg ml(-1) total NNAL following enzyme hydrolysis. The method was applied to a group of seven smokers; the free NNAL level for the group was 101-256 pg ml(-1) with NNAL-glucuronides at 247-566 pg ml(-1). The ratio of conjugated to free NNAL was in the range 0.98-2.95. The variability in total daily amount of NNAL excreted (ng per 24 h) had RSDs of 6-21% for free NNAL, 7-22% for conjugated NNAL and 6-20% for total NNAL excreted. When normalized to the number of cigarettes smoked, the amounts of NNAL excreted per cigarette smoked were in the range of amounts of NNK yields reported for cigarettes in the literature.  相似文献   

13.
Acamprosate is a medication used to treat alcohol dependence. Therapeutic drug monitoring is important in drugs for the treatment of substance-related disorders. Therefore, in this study, a new selective, very simple and rapid ultra-performance liquid chromatography–tandem mass spectrometer method was developed for the therapeutic drug monitoring of acamprosate. The developed method allows the determination of acamprosate in human plasma. The method was validated in terms of selectivity and linearity, which was in the range of 100–1,200 ng/ml for acamprosate. Intra-assay and inter-assay accuracy and precision were within the acceptable limits of the Eueopean Medicines Agency guideline. The lower limit of quantitation was 100 ng/ml for acamprosate. The developed method was successfully applied for therapeutic drug monitoring in patient plasma samples.  相似文献   

14.
A liquid chromatography-tandem mass spectrometric (LC-MS-MS) method was developed and validated for the determination of the anticholinergic and antimuscarinc drug propiverine and eight of its metabolites in serum, urine, faeces and different tissue samples of rats. Samples containing propiverine and its metabolites in serum and urine and in the supernatants of faeces and tissue homogenates were extracted and cleaned up using an automated solid phase extraction (SPE) method. An external calibration was used. The analytes were measured employing the multiple reaction monitoring mode (MRM). A sufficient response over the range of 10-1000 ng/ml was demonstrated. The lower limit of quantification of the nine substances was 10 ng/ml. The presented method is suitable for pharmacokinetic or toxicokinetic studies. To look for additional unknown metabolites, the LC-MS-MS system operated in the precursor ion mode using typical product ions of propiverine and of its metabolites. With the help of the chromatographic behaviour and typical fragment ions of the unknown metabolites, it was possible to elucidate their structure. Five until now unknown metabolites were found in the urine and faeces samples. However, without reference substances, a quantification of these analytes was not possible.  相似文献   

15.
A high-performance liquid chromatographic method is described for the determination of a fluoroquinolone, rufloxacin, and its N-desmethyl metabolite in plasma, urine and bile. Samples are chromatographed on a poly(styrene-divinylbenzene) column, the eluate being monitored with a fluorescence detector. The method was validated and a detection limit of 10 ng/ml for both rufloxacin and its metabolite in all the biological matrices considered was found. The method was successfully applied in pharmacokinetic studies.  相似文献   

16.
A sensitive and selective method for the determination of 2'-beta-fluoro-2',3'-dideoxyadenosine (lodenosine, F-ddA), an experimental anti-AIDS drug, and its major metabolite, 2'-beta-fluoro-2',3'-dideoxyinosine (F-ddI), in human plasma was developed and validated. The procedure employs two internal standards and a simple ultrafiltration step followed by chromatography on a Betasil C(18) minibore column. An in-line valve is used to remove salts before reaching the ion source. Detection is by electrospray ionization tandem mass spectrometry with selected reaction monitoring. The method has a limit of quantitation of 4 ng ml(-1) (16 nM) for F-ddA and 8 ng ml(-1) (32 nM) for F-ddI with a linear range up to 2000 ng ml(-1) (7.9 microM) for each. Predicted concentrations from a three-day validation study were within 5% of the nominal values for F-ddA and 16% for F-ddI. Intra- and inter-assay precision, as measured by relative standard deviation, was 13% or better for both compounds. To achieve good reproducibility, many variables related to the electrospray ionization were optimized for both precision and sensitivity. The method was successfully employed to analyze samples and evaluate plasma pharmacokinetics from a Phase I clinical trial.  相似文献   

17.
A high-performance liquid chromatographic assay was developed for determination of verapamil, norverapamil (M1) and its N-dealkylated metabolites (M2 and M3) in plasma. Plasma samples were vortex-mixed, deproteinized and centrifuged. The analysis was performed on a C18 reversed-phase column with fluorimetric detection. Since the polarity of verapamil and norverapamil differs considerably from that of M2 and M3, two different eluents were used for rapid high-performance liquid chromatographic separation. The eluent for the separation of verapamil and norverapamil was acetonitrile-0.07% orthophosphoric acid (33:67, v/v), and for M2 and M3 acetonitrile-0.07% orthophosphoric acid (25:75, v/v). The high-performance liquid chromatographic assay allowed rapid, sensitive and reliable quantitation of verapamil and three of its metabolites in plasma without an extraction procedure. The limit of detection was less than 5 ng/ml (plasma) for all compounds. No interferences with other commonly co-administered drugs was observed. Plasma concentrations of verapamil and its metabolites were determined in 21 patients receiving a continuous infusion of verapamil for tachyarrhythmia of acute onset. The steady-state plasma concentration data of verapamil and its three main metabolites in these patients gave evidence that the plasma concentration of verapamil and its active metabolite norverapamil was primarily determined by the extent of the formation of M2.  相似文献   

18.
A method was developed and fully validated for the quantitation of prazepam and its major metabolites, oxazepam and nordiazepam, in human plasma. Sample pretreatment was achieved by solid-phase extraction using Oasis HLB cartridges. The extracts were analysed by high-performance liquid chromatography (HPLC) coupled with single-quadrupole mass spectrometry (MS) with an electrospray ionization interface. The MS system was operated in the selected ion monitoring mode. HPLC was performed isocratically on a reversed-phase XTerra MS C18 analytical column (150 x 3.0 mm i.d., particle size 5 microm). Diazepam was used as the internal standard for quantitation. The assay was linear over a concentration range of 5.0-1000 ng ml(-1) for all compounds analyzed. The limit of quantitation was 5 ng ml(-1) for all compounds. Quality control samples (5, 10, 300 and 1000 ng ml(-1)) in five replicates from three different runs of analysis demonstrated an intra-assay precision (CV) of < or = 9.1%, an inter-assay precision of < or = 6.0% and an overall accuracy (relative error) of < 4.6%. The method can be used to quantify prazepam and its metabolites in human plasma covering a variety of pharmacokinetic or bioequivalence studies.  相似文献   

19.
A sensitive and selective method, using liquid chromatography-ionspray mass spectrometry, was developed and validated for the simultaneous determination of Estracyt (estramustine phosphate) and its four metabolites, estramustine, estromustine, estrone and estradiol, in human plasma. Deuterated internal standards were available for all analytes. The five compounds were extracted from plasma by protein precipitation with acetonitrile. The chromatographic separation was performed using a Zorbax SB C18, (150 x 4.6 mm i.d., 5 microm) reversed-phase column under gradient conditions with a mobile phase containing 2 mm ammonium acetate buffer (pH 6.8) and acetonitrile. MS detection was by electrospray ionization with multiple reaction monitoring in the positive ion mode for estramustine phosphate, estromustine and estramustine, and in the negative ion mode for estrone and estradiol. The limit of quantitation was 10 ng/mL for estramustine phosphate, 3 ng/mL for estromustine, estramustine and estrone and 30 ng/mL for estradiol. Linearity was verified from these LLOQs up to about 4000 ng/mL for the parent drug and 2000 ng/mL for the metabolites. Inter-day precision and accuracy values were all less than 15%. This assay was applied successfully to the routine analysis of human plasma samples collected in cancer patients administered estramustine phosphate intravenously.  相似文献   

20.
A sensitive and specific bioanalytical method for quantitation of a novel antiemetic (ADR-851) in plasma and urine has been developed and validated. The drug and internal standard (metoclopramide) are extracted from the plasma matrix by solid-phase extraction on cyanopropyl bonded-phase columns. After extraction, samples are separated by isocratic reversed-phase high-performance liquid chromatography. The parent drug, internal standard and a yet unidentified metabolite are detected by fluorescence. The method requires 1.0 ml of plasma or 0.1 ml of urine and has a lower limit of quantitation of 2 ng/ml with 10.9% relative standard deviation (R.S.D.). Method linearity has been established over a 2-800 ng/ml range when 1.0 ml of plasma is used. The intra- and inter-day imprecisions for the method are typically better than 6% and 11% R.S.D., respectively, in both plasma and urine over the entire dynamic range. The pooled estimate of bias is less than 5% and attests to the excellent accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号