首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of single electron transfer (SET) in P450-catalyzed N-dealkylation reactions has been studied using the probe substrates N-cyclopropyl-N-methylaniline (2a) and N-(1'-methylcyclopropyl)-N-methylaniline (2b). In earlier work, we showed that SET oxidation of 2a by horseadish peroxidase leads exclusively to products arising via fragmentation of the cyclopropane ring [Shaffer, C. L.; Morton, M. D.; Hanzlik, R. P. J. Am. Chem. Soc. 2001, 123, 8502-8508]. In the present study, we found that liver microsomes from phenobarbital pretreated rats (which contain CYP2B1 as the predominant isozyme) oxidize [1'-(13)C, 1'-(14)C]-2a efficiently (80% consumption in 90 min). Disappearance of 2a follows first-order kinetics throughout, indicating a lack of P450 inactivation by 2a. HPLC examination of incubation mixtures revealed three UV-absorbing metabolites: N-methylaniline (4), N-cyclopropylaniline (6a), and a metabolite (M1) tentatively identified as p-hydroxy-2a, in a 2:5:2 mole ratio, respectively. 2,4-Dinitrophenylhydrazine trapping indicated formation of formaldehyde equimolar with 6a; 3-hydroxypropionaldehyde and acrolein were not detected. Examination of incubations of 2a by (13)C NMR revealed four (13)C-enriched signals, three of which were identified by comparison to authentic standards as N-cyclopropylaniline (6a, 33.6 ppm), cyclopropanone hydrate (11, 79.2 ppm), and propionic acid (12, 179.9 ppm); the fourth signal (42.2 ppm) was tentatively determined to be p-hydroxy-2a. Incubation of 2a with purified reconstituted CYP2B1 also afforded 4, 6a, and M1 in a 2:5:2 mole ratio (by HPLC), indicating that all metabolites are formed at a single active site. Incubation of 2b with PB microsomes resulted in p-hydroxylation and N-demethylation only; no loss or ring-opening of the cyclopropyl group occurred. These results effectively rule out the participation of a SET mechanism in the P450-catalyzed N-dealkylation of cyclopropylamines 2a and 2b, and argue strongly for the N-dealkylation of 2a via a carbinolamine intermediate formed by a conventional C-hydroxylation mechanism.  相似文献   

2.
The suicide substrate activity of N-benzyl-N-cyclopropylamine (1) and N-benzyl-N-(1'-methylcyclopropyl)amine (2) toward cytochrome P450 and other enzymes has been explained by a mechanism involving single electron transfer (SET) oxidation, followed by ring-opening of the aminium radical cation (protonated aminyl radical) and reaction with the P450 active site. Although the SET oxidation of N-cyclopropyl-N-methylaniline (3) by horseradish peroxidase leads exclusively to ring-opened (non-cyclopropyl) products, P450 oxidation of 3 leads to formation of cyclopropanone hydrate and no ring-opened products, and 3 does not inactivate P450. To help reconcile these discrepant behaviors we have determined the complete metabolic fate of 1 with P450 in vitro. 3-Hydroxypropionaldehyde (3HP), the presumptive "signature metabolite" for SET oxidation of a cyclopropylamine, was observed for the first time in 57% yield, along with cyclopropanone hydrate (34%), cyclopropylamine (9%), benzaldehyde (6%), benzyl alcohol (12%), and benzaldoxime (19%). Unexpectedly, N-benzyl-N-cyclopropyl-N-methylamine (4) was found not to inactivate P450 and not to give rise to 3HP as a metabolite without first undergoing oxidative N-demethylation to 1. These and other observations argue against a role for SET mechanisms in the P450 oxidation of cyclopropylamines. We suggest that a conventional hydrogen abstraction/hydroxyl recombination mechanism (or its equivalent as a one-step "insertion" mechanism) at C-H bonds in 1-4 leads to nonrearranged carbinolamine intermediates and thereby to "ordinary" N-dealkylation products including cyclopropanone hydrate. Alternatively, hydrogen abstraction at the N-H bond of secondary cyclopropylamines 1 gives a neutral aminyl radical which could undergo rapid ring-opening leading either to enzyme inactivation or 3HP formation.  相似文献   

3.
Lactam 4-azatricyclo[3.2.1.0(2,7)]octan-3-one (16a) was proven to be formed in a previously reported reaction that claimed production of lactam 3-azatricyclo[3.2.1.0(2,7)]octan-4-one (17a). In a related reaction, bicyclo[3.1.0]hex-2-ene-endo-6-carbonitrile (15), lactam (16a), and novel hydroxycarbonitriles 19-21 were selectively formed when 3-nortricyclanone (1) was treated with aqueous hydroxylamine-O-sulfonic acid (HOSA). Since nitrile 15 neither hydrolyzed nor underwent intramolecular Ritter reaction under these conditions, mechanisms involving Beckmann rearrangement of 3 to nitrilium ion 9 (normal) and Beckmann fragmentation of 3 to cation 8 (abnormal) were investigated using semiempirical calculations. When alkaline HOSA was employed, lactams 16a and 17a were formed in a 1:2 ratio, perhaps via oxaziridine 6a. A similar selectivity was observed using an NH(3)/NaOCl reagent solution, which afforded lactone 4-oxatricyclo[3.2.1.0(2,7)]octan-3-one (16b) in addition to both lactams. Consequently, the Baeyer-Villiger oxidation of 1 with NaOCl gave 16b exclusively. Finally, the Schmidt reaction of ketone 1 gave only the lactam 17a, via cyclopropyl migration, and the same fragmentation products obtained from the acidic HOSA reaction. Migration selectivities are rationalized in terms of nucleofugacity, electronic effects, cyclopropyl regulation, and MO theory.  相似文献   

4.
Thermolysis of a 2'-[(16)O]-O-benzoyl-[(17)O]-5'-O-(tert-butyldimethylsilyl)-O(2),3'-cyclouridine derivative gave the more stable 3'-[(17)O]-O-benzoyl-[(16)O]- 5'-O-(tert-butyldimethylsilyl)-O(2),2'-cyclouridine isomer, which was converted into 3'-[(17)O]-2'-azido-2'-deoxyuridine by deprotection and nucleophilic ring opening at C2' with lithium azide. The 5'-diphosphate was prepared by nucleophilic displacement of the 5'-O-tosyl group with tris(tetrabutylammonium) hydrogen pyrophosphate. Model reactions gave (16)O and (18)O isotopomers, and base-promoted hydrolysis of an O(2),2'-cyclonucleoside gave stereodefined access to 3'-[(18)O]-1-(beta-D-arabinofuranosyl)uracil. Inactivation of ribonucleoside diphosphate reductase with 2'-azido-2'-deoxynucleotides results in appearance of EPR signals for a nitrogen-centered radical derived from azide, and 3'-[(17)O]-2'-azido-2'-deoxyuridine 5'-diphosphate provides an isotopomer to perturb EPR spectra in a predictable manner.  相似文献   

5.
Under anaerobic, peroxide-free conditions (pH 5.5, 25 degrees C), horseradish peroxidase (HRP) catalyzes the rapid, non-oxidatve decarboxylation of N-alkyl-N-phenylglycine derivatives to the corresponding N-alkyl-N-methylanilines in 100% yield. When the reaction is conducted in D2O buffer, the product contains a single deuterium in the methyl group. The reactions are very fast compared to the oxidative decarboxylation of the same substrates under standard peroxidatic conditions (i.e., hydrogen peroxide added, air present) and in fact are inhibited by peroxide and oxygen. To account for these unprecedented observations, we propose a cyclic mechanism in which ferric HRP abstracts an electron from the substrate, giving an aminium ion intermediate that decarboxylates; protonation of the resulting alpha-aminoradical on carbon gives an aminium ion that is reduced by ferrous HRP to complete the cycle.  相似文献   

6.
生物酶HRP催化H~2O~2氧化间苯二胺反应的研究   总被引:2,自引:0,他引:2  
牛淑妍  焦奎 《化学学报》2000,58(6):617-621
应用电化学分析,高效液相色谱(HPLC),紫外-可见光谱(UV-vis),红外光谱(IR)和核磁共振(NMR)等技术对辣根过氧化物酶(HRP)催化H~2O~2氧化间苯二胺(MPD)的反应进行了研究。伏安法和高效液相色谱实验说明,在所选择的酶催化反应条件下,酶催化反应生成一种产物。用化学方法制得了HRP酶催化H~2O~2氧化MPD的产物纯品。经UV-vis,IR和^1HNMR谱鉴定,产物为2,7-二氨基吩嗪。写出了酶催化反应过程,同时对酶催化反应产物的电极还原过程也进行了研究。  相似文献   

7.
Amines are widely used and originate from both anthropogenic and natural sources. Recently, there is, in addition, a raised concern about emissions of small amines formed as degradation products of the more complex amines used in CO(2) capture and storage systems. Amines are bases and can readily contribute to aerosol mass and number concentration via acid-base reactions but are also subject to gas phase oxidation forming secondary organic aerosols. To provide more insight into the atmospheric fate of the amines, this paper addresses the volatility properties of aminium nitrates suggested to be produced in the atmosphere from acid-base reactions of amines with nitric acid. The enthalpy of vaporization has been determined for the aminium nitrates of mono-, di-, trimethylamine, ethylamine, and monoethanolamine. The enthalpy of vaporization was determined from volatility measurements of laboratory generated aerosol nanoparticles using a volatility tandem differential mobility analyzer set up. The determined enthalpy of vaporization for aminium nitrates range from 54 up to 74 kJ mol(-1), and the calculated vapor pressures at 298 K are around 10(-4) Pa. These values indicate that aminium nitrates can take part in gas-to-particle partitioning at ambient conditions and have the potential to nucleate under high NO(x) conditions, e.g., in combustion plumes.  相似文献   

8.
Photoinduced reactions of chloranil (CA) with 1,1-diarylethenes 1 [(p-X-Ph)(2)C=CH(2), X = F, Cl, H, Me] in benzene afforded products 4-14, respectively, with the bicyclo[4.2.0]oct-3-ene-2,5-diones 4, the 6-diarylethenylcyclohexa-2,5-diene-1,4-diones 5, and 2,3,5, 6-tetrachlorohydroquinone 13 as the major primary products. The cyclobutane products 4 are formed via a triplet diradical intermediate without involvement of single electron transfer (SET) between the two reactants, while 5 is derived from a reaction sequence with initial SET interaction between (3)CA and the alkene. The 9-arylphenanthrene-1,4-diones 6 and its 10-hydroxy-derivatives 7 are secondary photochemical products derived from 5. The isomeric cage products 9-11 are formed from 4 via intramolecular benzene-alkene [2 + 2] (ortho-)photocycloadditions induced by the triplet excited enedione moiety. The relative amount of the two groups of products (4 and its secondary products 9-11 via non-SET route vs 5 and its secondary products 6, 7, 8, 12, and 14 via SET route) shows a rather regular change, with the ratio of non-SET route products gradually increasing with the increase in oxidation potential of the alkenes and in the positive free energy change for electron transfer (DeltaG(ET)) between (3)CA and the alkene, at the expense of the ratio of the products from the SET route. The competition between the SET and non-SET routes was also found to be drastically influenced by solvent polarity, with the SET pathways more favored in polar solvent. Photo-CIDNP investigations suggest the intermediacy of exciplexes or contact ion radical pairs in these reactions in benzene, while in acetonitrile, SET process led to the formation of CA(*)(-) and cation radical of the alkene in the form of solvent separated ion radical pairs and free ions.  相似文献   

9.
甲醛在脯氨酸膜修饰电极上的电催化氧化   总被引:5,自引:0,他引:5  
应用电化学法和光谱电化学法研究了脯氨酸膜修饰电极的制备 ,用循环伏安法探讨了该膜的电化学性质及其对甲醛的催化氧化 .该电极催化稳定性良好 ,在NaOH溶液中 ,掺杂Ni (Ⅱ )后的脯氨酸膜修饰电极对甲醛和乙醇的氧化均有一定的催化活性 ,但对甲醛的催化活性更佳  相似文献   

10.
The photoinduced cleavage of the C,C-oxirane bond of γ, δ-epoxy-enones: UV.-irradiation of 4-methylidene-5,6-epoxy-5,6-dihydro-β-ionone On 1n, π*-excitation (λ ≥ 347 nm, pentane) 5 gives the isomeric bicyclic ether 10 in 75% yield (s. Scheme 2). In methanol the photoconversion of 5 to 10 is strongly reduced (12%) in favour of the formation of the methanol adduct 11 (43%). On photolysis in aqueous acetonitrile 5 is converted to the bicyclic ether 10 (9%), the dihydrofurane 12 (18%) as well as to the triketones 13A and 13B (7%), and 14 (23%). On 1π, π*-excitation (λ = 254 nm) in pentane no 10 is formed, but 5 isomerizes to the tricyclic cyclopropyl compound 16 (59%), the allenic product 17 (10%), and the cyclopropene compound 18 (12%; s. Scheme 3). Photolysis in methanol furnishes 11 (63%), and 18 (4%), but no tricyclic cyclopropyl compound 16 . In a secondary photoreaction (λ = 254 nm) the dihydrofurane 12 is isomerized to the bicyclic cyclopropyl compound 20 . Evidence is given that the products 11 and 13 are formed by solvent addition to an intermediate ketonium ylide b (s. Scheme 12). The presence of b is further proven by the formation of 12 , a product of an electrocyclization of b . On photofragmentation of b carbenoids d and e are presumably formed (s. Scheme 14). 1,2-Hydrogen shift in d yields the allene derivative 17 , and cyclization of d gives the cyclopropene compound 18 . On the other hand, e cyclizes to the non isolated cyclopropene compound 69 which is transformed to 16 by an intramolecular [4 + 2]-cycloaddition. The present investigation shows that the photochemistry of 5 is determined by photoinduced C,C-bond cleavage of the oxirane ring. This is in sharp contrast to the photochemistry of conjugated γ, δ-epoxy-enones without the additional double bond in ε, ζ-position, where selective photocleavage of the C(λ), O-bond is observed.  相似文献   

11.
The powerful methyl(trifluoromethyl)dioxirane (1b) was employed to achieve the direct oxyfunctionalization of 2,4-didehydroadamantane (5), spiro[cyclopropane-1,2'-adamantane] (9), spiro[2.5]octane (17), and bicyclo[6.1.0]nonane (19). The results are compared with those attained in the analogous oxidation of two alkylcyclopropanes, i.e., n-butylcyclopropane (11) and (3-methyl-butyl)-cyclopropane (14). The product distributions observed for 11 and 14 show that cyclopropyl activation of alpha-C-H bonds largely prevails when no tertiary C-H are present in the open chain in the tether; however, in the oxyfunctionalixation of 14 cyclopropyl activation competes only mildly with hydroxylation at the tertiary C-H. The application of dioxirane 1b to polycyclic alkanes possessing a sufficiently rigid framework (such as 5 and 9) demonstrates the relevance of relative orientation of the cyclopropane moiety with respect to the proximal C-H undergoing oxidation. At one extreme, as observed in the oxidation of rigid spiro compound 9, even bridgehead tertiary C-H's become deactivated by the proximal cyclopropyl moiety laying in the unfavorable "eclipsed" (perpendicular) orientation; at the other end, a cyclopropane moiety constrained in a favorable "bisected" orientation (as for didehydroadamantane 5) can activate an "alpha" methylene CH2 to compete effectively with dioxirane O-insertion into tertiary C-H bonds. Comparison with literature reports describing similar oxidations by dimethyldioxirane (1a) demonstrate that methyl(trifluoromethyl)dioxirane (1b) presents similar selectivity and remarkably superior reactivity.  相似文献   

12.
在Ag(NH3)2+溶液中,在钛基体上电沉积出树枝状纳米银颗粒,研究了沉积电位对树枝状纳米银颗粒形成的影响,探讨了这种树枝状纳米银颗粒形成的机理,并研究了这种钛基树枝状纳米银电极(Ag/Ti)在碱性溶液中对甲醛氧化的电催化活性。结果表明,在30 mmol/LAg(NH3)2+以及沉积电位在-1.8~-1.2 V(vsAg)时,形成了形态为树枝状的纳米银颗粒。在沉积电位为-1.6 V(vs Ag),Ag(NH3)2+浓度为30 mmol/L的溶液中,电沉积制备的这种树枝状纳米银电极(Ag/Ti)对甲醛氧化具有强的电催化活性。循环伏安曲线表明,在0.1 mol/LNaOH溶液中以及甲醛的浓度范围在0~40 mmol/L,甲醛浓度和它的氧化峰电流密度呈现良好的线性关系,检测下限达到0.662 mmol/L,这种新型的树枝状纳米银电极有望作为甲醛检测的传感器。  相似文献   

13.
The asymmetric syntheses of heteroaromatic 3-[(tert-butyldimethylsilyl)oxy]-2-azetidinones 12-16 via chiral ester enolate-imine cyclocondensation chemistry are described. The azetidinones contain heteroaromatic moieties which, in certain cases, contribute to a decrease in enantioselectivity due to possible alternate coordinations in the transition states. The (3R,4S)-3-[(tert-butyldimethylsilyl)oxy]-4-heteroaryl-2-azetidinones were subsequently converted to the heteroaromatic taxanes 31-36 and 43-45. Conformational analyses of the 3'-(2-pyridyl) analogue 31 and 3'-(2-furyl) analogue 43 indicate they have solution conformational preferences virtually identical to paclitaxel and docetaxel. Heteroaromatic N-acyl paclitaxel analogues 47-51 were prepared from N-debenzoylpaclitaxel via Schotten-Baumann acylation. The majority of the 14 analogues displayed good to excellent activity in a microtubule assembly assay in comparison to paclitaxel. The analogues were also tested for cytotoxicity against B16 melanoma cells. 3'-Dephenyl-3'-(2-pyridyl)paclitaxel (31), 3'-dephenyl-3'-(2-furyl)paclitaxel (34), N-BOC-3'-dephenyl-3'-(2-furyl)paclitaxel (43), 3'-dephenyl-3'-(2-furyl)-N-(hexanoyl)paclitaxel (44), and N-debenzoyl-N-(3-furoyl)paclitaxel (51) were found to be more cytotoxic than paclitaxel against this cell line. 3'-Dephenyl-3'-(4-pyridyl)paclitaxel (33) and N-debenzoyl-N-(2-furoyl)paclitaxel (50) displayed cytotoxicity against B16 melanoma cells similar to paclitaxel.  相似文献   

14.
Trialkyl phosphites ( 1 ), dialkyl phenylphosphinites ( 2 ), and alkyl diphenylphosphonites ( 3 ) as well as 2-phenyl-1,3,2-dioxaphospholan ( 4b ) and 2-phenyl-1,3,2-dioxaphosphorinan ( 4b ) give rise to dediazoniation of arenediazonium salt ( 5 ) in an alcoholic solvent under an argon atmosphere at 20°C. The reaction proceeds via a radical-chain mechanism initiated by single-electron transfer (SET) from the trivalent-phosphorus compounds to 5 , as a result of which, an aryl radical Ar⋅ and a cation radical 15 are generated from the former and the latter, respectively. The aryl radical Ar⋅ participates in this chain process abstracting a hydrogen from the solvent alcohol, yielding the corresponding arene ArH. The cation radical 15 undergoes both an ionic reaction with the solvent alcohol and a radical coupling with Ar⋅, giving the phosphoranyl radical 16 and the phosphonium ion 17 , respectively, as intermediates. The phosphoranyl intermediate 16 decomposes through either the SET process to 5 or by β-scission, yielding the oxidation product (phosphate, phosphonate, or phosphinate from 1 , 2 , or 3 , respectively, or phosphonates from 4 ). The phosphonium intermediate 17 affords the arylated product (phosphonate, phosphinate, or phosphine oxide from 1 , 2 , 3 , respectively, or the phosphinate from 4 ). Among the trivalent-phosphorus compounds tested, 1 gives the arylated product in the highest yield. This observation, together with the literature data of ESR for structurally related phosphoranyl radicals, indicates that the radical coupling of 15 with Ar⋅ is facilitated by the high spin density on its central phosphorus atom.  相似文献   

15.
Peroxidase activity of a complex of water-soluble cationic metalloporphyrin with anti-cationic porphyrin antibody is reported. Antibody 12E11G, which was prepared by immunization with a conjugate of 5-(4-carboxyphenyl)-10,15,20-tris(4-methylpyridyl)porphine iodide (3MPy1C), bound to tetramethylpyridylporphyrin iron complex (FeIII-TMPyP) with the dissociation constant of 2.6 x 10(-7) M. The complex of antibody 12E11G with FeIII-TMPyP catalyzed oxidation of pyrogallol, catechol, and guaiacol. A Lineweaver-Burk plot for the oxidation of pyrogallol catalyzed by the FeIII-TMPyP-antibody complex showed Km=8.6 mM and kcat=680 min(-1). Under the same conditions, Km and kcat for horseradish peroxidase (HRP) were 0.8 mM and 1750 min(-1), respectively. Although the binding interaction of the antibody to the substrates was one order lower than that of native HRP, the peroxidase activity of this system was in the same order of magnitude as that of HRP.  相似文献   

16.
The photolysis and thermolysis of the Cyclopropyl silyl ketones 3, 4 , and 5 are described. On n,π* excitation, the silyl ketones 3 and 4 undergo a Norrish-type-II reaction involving γ-H abstraction, cyclopropyl ring cleavage followed by retro-enolization to the acylsilanes 6 and (E/Z)- 12 , respectively. As a common product of 3 and 4 , the dihydrofuran 7 is formed via the alternative C(α)-C(β) cleavage of the cyclopropyl moiety. Compounds 6 , 7 , and (E/Z)- 12 are new types of acylsilane photoproducts. The irradiation of acylsilane 5 gave the analogous dihydrofuran 15 as the only product. On photolysis of 3 and 4 , products 8A + B and 13A + B , derived from a siloxy carbene intermediate, were found as well. On thermolysis of 3 and 4 , the acylsilanes 6 (80%), and (E)- 12 (33%) and (Z)- 12 (34%), respectively, are formed as the only products. Their formation may occur via a [1, 5] sigmatropic H-shift. The thermolysis of 5 gave the diene 16 whose formation can be explained by insertion of a siloxycarbene into the neighboring cyclopropane leading to the cyclobutene 28 as thermally unstable intermediate.  相似文献   

17.
1,3-Dipolar synthons formed from vicinal TBDPS-substituted cyclopropyl alkyl/phenyl ketones on treatment with Lewis acids such as TiCl(4) and Et(2)AlCl reacted with allenylsilanes to furnish [3 + 2] and [3 + 3] adducts with high regio- and stereocontrol. [reaction: see text]  相似文献   

18.
Regioselective nucleophilic addition of bisnucleophiles 1,2-benzenediamine, 2-amino-benzenethiol, and N-phenyl-1,2-benzenediamine to 1,3-diphenylbenzo[e][1,2,4]triazin-7(1H)-one (1) at C6 followed by intramolecular cyclocondensation at the C7 carbonyl afforded highly coloured tetracenes 1,3-diphenyl-1,6-dihydro-[1,2,4]triazino[5,6-b]phenazin-4-ium 4-methylbenzenesulfonate (12), 1,3-diphenyl-1H-[1,2,4]triazino[6,5-b]phenothiazine (14) and 1,3,11-triphenyl-1,6-dihydro-[1,2,4]triazino[5,6-b]phenazin-11-ium 4-methylbenzenesulfonate (15), respectively. Neutralization of the latter with alkali gave the free base 1,3,11-triphenyl-1H-[1,2,4]triazino[5,6-b]phenazin-11-ium-6-ide (16). Furthermore, the benzotriazinone 1 reacts with dimethyl malonate to give 6-(methoxycarbonyl)-7-oxo-1,3-diphenyl-7H-benzofuro[5,6-e][1,2,4]triazin-1-ium-4-ide (17) in 74% yield, while with S(4)N(4) [5,6-c]-thiadiazolo-7-oxo-1,3-diphenyl-1,2,4-benzotriazine (22) was formed in 15% yield. The free bases 16 and 17 display negative solvatochromism, which supports charge separated ground states similar to those of zwitterionic biscyanines, and DFT calculations at the UB3LYP/6-31G(d) level afford ΔE(ST) values of -13.6 and -18.7 kcal mol(-1), respectively that strongly favour the singlet ground state. All ring systems described are new and fully characterized.  相似文献   

19.
A novel fullerenyl cation (EtO)2P+(OH)CH2-C60+ was generated by simply dissolving the monofunctionalized hydrofullerene RC60-H or singly bonded dimer RC60-C60R (R = CH2P(O)(OEt)2) in oxidizing acids such as H2SO4 and FSO3H. The cation was also formed in CH2Cl2 by one-electron oxidation with aminium radical cation and was used for further functionalization of C60.  相似文献   

20.
Gemifloxacin mesylate (GFM), chemically (R,S)‐7‐[(4Z)‐3‐(aminomethyl)‐4‐(methoxyimino)‐1‐pyrrolidinyl]‐1‐cyclopropyl‐6‐fluoro‐1,4‐dihydro‐4‐oxo‐1,8‐naphthyridine‐3‐carboxylic acid methanesulfonate, is a synthetic broad‐spectrum antibacterial agent. Although many papers have been published in the literature describing the stability of fluorquinolones, little is known about the degradation products of GFM. Forced degradation studies of GFM were performed using radiation (UV‐A), acid (1 mol L?1 HCl) and alkaline conditions (0.2 mol L?1 NaOH). The main degradation product, formed under alkaline conditions, was isolated using semi‐preparative LC and structurally elucidated by nuclear magnetic resonance (proton – 1H; carbon – 13C; correlate spectroscopy – COSY; heteronuclear single quantum coherence – HSQC; heteronuclear multiple‐bond correlation – HMBC; spectroscopy – infrared, atomic emission and mass spectrometry techniques). The degradation product isolated was characterized as sodium 7‐amino‐1‐pyrrolidinyl‐1‐cyclopropyl‐6‐fluoro‐1,4‐dihydro‐4‐oxo‐1,8‐naphthyridine‐3‐carboxylate, which was formed by loss of the 3‐(aminomethyl)‐4‐(methoxyimino)‐1‐pyrrolidinyl ring and formation of the sodium carboxylate. The structural characterization of the degradation product was very important to understand the degradation mechanism of the GFM under alkaline conditions. In addition, the results highlight the importance of appropriate protection against hydrolysis and UV radiation during the drug‐development process, storage, handling and quality control. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号