首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
本文用T-matrix方法计算了非球形气溶胶粒子的光学特性,得到了气溶胶粒子的消光截面、散射截面、吸收截面与气溶胶粒子形状的关系,不同形状气溶胶粒子的有着相同的散射相函数和不同的偏振度,非球形气溶胶粒子的散射相函数对其复折射指数的实部和虚部都不太敏感,而偏振相函数对其实部和虚部都比较敏感.此结论为研究大气辐射传输提供了较好的方法,尤其是偏振度与偏振相函数的提出为用偏振的方法进一步的反演气溶胶的光学参数提供了理论基础.  相似文献   

2.
球形粒子在聚焦拉盖尔-高斯光束中的散射特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
赵继芝  江月松  欧军  叶继海 《物理学报》2012,61(6):64202-064202
研究了球形粒子在聚焦拉盖尔-高斯光束中的散射特性. 根据广义Mie理论, 推导出球形粒子在聚焦拉盖尔-高斯光束中散射系数的解析公式. 针对光束的电场分布及粒子散射强度进行了数值仿真, 讨论了散射强度随散射角、散射球粒子半径和拓扑荷的变化特性, 并通过散射系数解释了散射强度分布的振荡现象. 结果表明, 在聚焦拉盖尔-高斯光束照射下, 球形粒子的后向散射强度随着粒子半径的增大而逐渐增大; 后向散射强度开始增大时对应的粒子半径与拓扑荷有关. 通过与高斯光束的对比, 可以看出球形粒子在聚焦拉盖尔-高斯光束中散射特性的差异, 使其在粒径测量、光通信和大气后向散射探测等方面具有潜在应用价值.  相似文献   

3.
赵一鸣  江月松 《应用光学》2007,28(3):358-362
目标对入射偏振光的散射特性反映了目标的属性信息。在Rayleigh散射理论的基础上,通过单层非球形粒子对入射偏振光的散射数学模型,应用矢量传输方程来计算非球形粒子散射的Mueller矩阵元,求解散射介质的偏振度,讨论在不同介质层厚度、粒子半径和探测角的条件下,非球形粒子散射光去偏振度的变化特性,给出了模拟仿真结果。该方法为研究目标的内部结构、厚度和粗糙度等特征以及目标的探测和识别提供了一种新的途径。  相似文献   

4.
在我国经济社会快速发展的同时,雾霾天气成为了突出的环境问题,雾霾粒子的测量非常重要。偏振紫外光与大气雾霾粒子发生散射后,散射光偏振状态(Stokes矢量以及偏振度)的改变能反映雾霾粒子的相关物理特性(粒径、复杂折射率等)。基于Mie散射理论建立了紫外光雾霾球形粒子直视和非直视单次散射模型,研究了单个球形粒子和链状结构球形粒子物理特性的改变对散射光偏振状态的影响,并用蒙特卡洛仿真分析已知粒径分布的雾霾粒子浓度对散射光偏振状态的影响。结果表明:针对单个球形粒子,随着粒子粒径的增大Stokes矢量中散射光光强(Is)随之增强,粒子复折射率虚部为先增大后较小,偏振度也是在不断增大,且复折射率虚部较小时,偏振度增加趋势快;对于粒径分布不变的雾霾粒子,随着粒子的浓度增加,雾霾粒子的散射系数、消光系数和吸收系数均呈线性增加,但是Is先增大后减小。针对链状球形粒子,随着粒子个数的增加,Is均呈现增大的趋势,且偏振度可用于区分链状球形粒子是否由相同球形粒子组成; 相同球形粒子组成链状结构中,Is随着粒子数量的增加而线性增大,偏振度不改变;不同球形粒子组成的链状结构,Is以及偏振度的变化趋势可以区分粒子物理特性。  相似文献   

5.
群体粒子散射光偏振特性的研究   总被引:7,自引:4,他引:7       下载免费PDF全文
叶伏秋 《应用光学》2004,25(2):22-24
在Mie散射理论的基础上分析了群体粒子散射的偏振特性,并用两种不同直径(0.26 μm,0.55 μm)的球形粒子作为散射介质进行了相关实验,比较了群体粒子散射光垂直与水平偏振光的偏振度.实验发现:散射光的偏振度随粒子直径的变化呈现出一定的规律性,直径大的粒子散射光在水平方向的偏振度小于直径小的粒子;而垂直方向的偏振度却完全相反,直径大的粒子大于直径小的粒子.  相似文献   

6.
采用Mie散射理论计算了可见光波段等效球飞尘气溶胶粒子的Stokes散射矩阵,并与实验得到的空间随机取向的非球形飞尘气溶胶粒子结果进行了对比分析;由理论与实验方法得到的散射相函数,采用离散坐标法计算了两者的双向反射函数(BRDF),并对此结果进行了分析研究。结果表明:实验测量的非球形飞尘气溶胶粒子群的散射矩阵和基于球形粒子假设的Mie散射理论计算结果在大多数散射角上都不相同,但是不对称因子却大致相同;球形-非球形粒子群的BRDF随反射角的变化趋势基本一致,但是球形粒子群的BRDF曲线分布具有更大的波动趋势;随着光学厚度的增加,球形-非球形粒子群的BRDF曲线分布均趋于平坦,计算结果趋于一致。因此在飞尘气溶胶粒子散射特性研究中,当光学厚度较小时,用球形假设的方法会造成一定的误差,BRDF相对误差最大可以达到60%,需考虑粒子非球形特性造成的影响;而当光学厚度较大时,BRDF相对误差一般不会超过10%,采用球形假设的方法具有一定的适用性。  相似文献   

7.
采用Mie散射理论计算了可见光波段等效球飞尘气溶胶粒子的Stokes散射矩阵,并与实验得到的空间随机取向的非球形飞尘气溶胶粒子结果进行了对比分析;由理论与实验方法得到的散射相函数,采用离散坐标法计算了两者的双向反射函数(BRDF),并对此结果进行了分析研究。结果表明:实验测量的非球形飞尘气溶胶粒子群的散射矩阵和基于球形粒子假设的Mie散射理论计算结果在大多数散射角上都不相同,但是不对称因子却大致相同;球形-非球形粒子群的BRDF随反射角的变化趋势基本一致,但是球形粒子群的BRDF曲线分布具有更大的波动趋势;随着光学厚度的增加,球形-非球形粒子群的BRDF曲线分布均趋于平坦,计算结果趋于一致。因此在飞尘气溶胶粒子散射特性研究中,当光学厚度较小时,用球形假设的方法会造成一定的误差,BRDF相对误差最大可以达到60%,需考虑粒子非球形特性造成的影响;而当光学厚度较大时,BRDF相对误差一般不会超过10%,采用球形假设的方法具有一定的适用性。  相似文献   

8.
非球形粒子的散射特性分析   总被引:1,自引:0,他引:1  
本文首先利用T矩阵方法计算了复折射率吸收指数和折射指数变化时的椭球粒子和Chebyshev粒子在不同等效尺度参数下的光散射特性,并与等效的球形粒子的光散射结果进行了比较;然后分析以上两种类型非球形粒子散射特性之间的关系.结果表明:椭球粒子和Chebyshev粒子的散射特性与等效球形粒子的散射特性存在着差别,粒子的形状越偏离球形,这种差别就越大;复折射率折射指数的变化对非球形散射效率因子的影响要比吸收指数的影响更大一些;当等效尺度参数相同时,椭球粒子与等效球形粒子的散射效率因子的差别要远远大于Chebyshev粒子与等效球形粒子散射效率因子之间的差别.  相似文献   

9.
激光熔覆中球形粒子对激光散射强度的研究   总被引:1,自引:1,他引:0  
为了研究同轴激光熔覆过程中球形粉末粒子和激光的相互作用,为激光熔覆中激光器和粒子的选择提供一定的理论依据,在进行了一定假设的前提下,应用米氏(Mie)散射理论建立了激光被球形粉末粒子散射的物理模型,应用Mathematica数学软件绘制出了在不同粒子半径和不同激光波长情况下,激光被球形粉末粒子散射后的强度分布图,并对模拟结果进行了分析.研究结果显示:金属粉末粒子的半径和激光的波长是影响激光散射强度分布的重要因素.结果表明:当光学常数q≤30的时候,散射光强在偏离传播方向20.以外还有一个次极大值,且次极大值占总散射光强比例较大,不利于熔池的形成;当光学常数q≥30的时候,散射后的光强主要集中在偏离传播方向5.~6.的小范围内,且在此范围内的散射强度很高,有利于提高激光熔覆效率.  相似文献   

10.
非球形气溶胶粒子短波红外散射特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用T矩阵方法,以及基于扩散限制凝聚理论的广义多粒子米散射方法,研究了多种气溶胶粒子在1.6和2.0μm波段处,非球形单粒子和团簇粒子的光散射辐射特性,并分析了粒子有效半径、复折射指数、粒子形状、相对湿度等因素对非球形粒子散射特性的影响.分析表明,除了粒子有效半径和形状会在不同程度上引起粒子散射特性变化,相对湿度对其影响也比较大,球形粒子与非球形粒子在不同相对湿度下后向散射相对差异均在18%以上;当粒子体积较小时,水溶性气溶胶的后向散射强度随相对湿度的增加而增强,而当粒子体积较大时,则随相对湿度的增加而减弱;在体积相同的条件下,体积较小的团簇粒子的不对称因子比非球形单粒子平均偏大0.023,而体积较大的团簇粒子,却比非球形单粒子不对称因子平均偏小0.055;单粒子或等体积的团簇粒子,其不同波段之间单次散射反照率差异较大,最大可达0.226.该工作对研究气溶胶多次散射对CO2浓度卫星反演精度影响具有重要的科学意义.  相似文献   

11.
硅片表面球形粒子散射研究   总被引:2,自引:3,他引:2  
曹楷  程兆谷  高海军 《光子学报》2006,35(4):517-520
为求解硅片表面微小粒子在任意线偏振平面入射光照射下的散射光光强分布,选择了基于Mie散射的杨氏模型为依据,推导了该模型下散射光强空间分布的计算方法,并给出了0.54 μm球形粒子在垂直、倾斜入射下光强空间分布的模拟计算结果,以及入射平面第一象限内散射光强与国外已发表实验结果的比较.  相似文献   

12.
根据Mie散射理论,给出了金属粒子的散射、消光和吸收截面以及散射场强度的计算公式,并数值计算了在λ=r=1μm时,金属Au粒子在五种不同的基质中的散射截面和散射光强,结果表明基质折射率越大散射特性越强。  相似文献   

13.
吕依颖  高珊  徐庆君 《发光学报》2019,40(3):298-303
大气中大量存在的复合粒子会对激光传输效率产生很大影响。由于空气中水蒸气含量较高,以C作为凝结核外层包裹以水的核壳结构微粒对光传输具有明显的散射效应。本文应用Mie散射理论对C@H_2O核壳结构微粒的散射特性进行了理论分析和数值计算,首先给出了不同入射波长、核粒子半径以及水膜厚度条件下散射强度分布变化曲线;其次给出了不同入射波长、核粒子半径以及水膜厚度条件下偏振变化情况;最后讨论了光学截面与粒子半径之间的关系。结果表明各参数对前向散射强度影响较大,入射波长越大散射强度越弱,C核半径增大粒子的前向散射增强,水膜厚度增大粒子的前向散射增强,而后向散射无明显影响;入射波长较大时,粒子在多个角度出现线偏振光,入射波长增大、碳核半径变大、水膜厚度增大,偏振度峰值都会增多;随着入射波长的增大,散射截面最大峰值位置向着半径增大的方向移动,并伴随一定的振荡现象,散射和消光截面在碳核半径为0.1μm左右达到最大值。  相似文献   

14.
本文应用Mie散射理论对微球体颗粒光散射的性质进行了理论分析与数值计算,得到了吸收截面与波长,散射强度与散射角以及散射强度与参数x的关系。结果表明,入射波长在300~4800 nm,粒子的吸收截面都为零;当λ>4800 nm,吸收截面随着粒子半径的增大而增大。  相似文献   

15.
采用矩阵形式描述光子的偏振态和大气散射理论, 分析了“BB84协议”中四个不同偏振光子经单次散射后光子的偏振度与前向散射角的关系。发现单次散射不改变偏振光子的总偏振度, 但改变偏振光子的线偏振度与圆偏振度, 尤其对垂直偏振光子的线偏振度与圆偏振度改变明显; 当前向散射角小于0.25 rad时, 四个不同偏振光子的线偏振度基本保持不变, 量子信息仍然保持; 同时分析了大气散射对不同波长的垂直偏振光子线偏振度的影响, 发现长波光子偏振度保持度高。  相似文献   

16.
The Mie Scattering Imaging method (MSI) gathers out‐of‐focus images of dispersed spherical particles present in a laser light sheet and extracts the individual particle diameter from these images. The general idea of the method has been around for more than a decade and a number of papers has dealt with it over recent years. Our work focuses on small particle sizes from 20 μm down to 2 μm, a range which has not been tackled so far although it is of great importance in particle systems. We present an optical set‐up with a special arrangement of camera lenses that allows to work in this range. An evaluation algorithm based on correlation of the experimental optical information with theoretical Mie scattering was found to give the most accurate results for particle sizing. Besides accuracy measurements on solid spheres the versatility of the method is demonstrated by an example of transient droplet growth between 2–7 μm.  相似文献   

17.
基于Mie散射理论的铌酸锂晶粒散射特性   总被引:1,自引:1,他引:1       下载免费PDF全文
基于Mie散射理论,对铌酸锂晶粒光散射特性进行了理论分析与数值计算,得到了散射强度分布、偏振度与散射角、散射强度与粒子尺寸参数,以及光学截面与粒子半径的关系。研究表明:前向散射占优势,并随粒子半径的增大而增强;当粒子半径为0.1 μm 左右,散射截面和吸收截面达到最大值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号