首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Efficient chemistry is described for the regioselective labelling of the CFC alternative 1,1,1,2-tetrafluoroethane with cyclotron-produced positron-emitting fluorine-18 (t1/2 = 109.7 min). [1-18F]1,1,1,2-Tetrafluoroethane was prepared by nucleophilic addition of no-carrier-added [18F]fluoride to trifluoroethylene and [2-18F]1,1,1,2-tetrafluoroethane by nucleophilic displacement of tosylate with [18F]fluoride in 2,2,2-trifluoroethyl p-toluenesulphonate. Each reaction was mediated by a potassium cation-Kryptofix® 2.2.2 complex, with or without acetonitrile as solvent, in a sealed glassy carbon vessel. The selectivities were 97.2±0.4% for labelling in the 1-position by nucleophilic addition and 91.2±1.2% for labelling in the 2-position by nucleophilic substitution. GC separation afforded each labelled tetrafluoroethane in high radiochemical purity (>99.995%) and high chemical purity (>99.6%). Specific radioactivities of about 37 MBq (1 mCi) per μmol were obtained. Each synthesis was fully automated to cope safely with the high initial radioactivity and delivered purified product within one physical half-life of the fluorine-18 The products are suitable for pharmacokinetic studies in man.  相似文献   

2.
In the presence of KOH and Et3N, pyridinium and isoquinolinium N-ylides generated in situ from their bromides react with 1-chloro-2,2,2-trifluoroethane (HCFC-133a, bp 6 °C) or 1,1,1,2-tetrafluoroethane (HFC-134a, bp −27 °C) to give the corresponding 2-fluoroindolizines via 1,3-dipolar [3+2] cycloaddition at 80-100 °C in DMSO at atmospheric pressure in normal glassware.  相似文献   

3.
A number of applications with ionic liquids (ILs) and hydrofluorocarbon gases have recently been proposed. Detailed phase equilibria and modeling are needed for their further development. In this work, vapor–liquid equilibrium, vapor–liquid–liquid equilibrium, and mixture critical points of imidazolium ionic liquids with the hydrofluorocarbon refrigerant gas, 1,1,1,2-tetrafluoroethane (R-134a) was measured at temperatures of 25 °C, 50 °C, 75 °C and pressure up to 143 bar. The ionic liquids include 1-hexyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide ([HMIm][Tf2N]), 1-hexyl-3-methyl-imidazolium hexafluorophosphate ([HMIm][PF6]), and 1-hexyl-3-methyl-imidazolium tetrafluoroborate ([HMIm][BF4]). The effects of the anion and cation on the solubility were investigated with the anion having greatest impact. [HMIm][Tf2N] demonstrated the highest solubility of R-134a. The volume expansion and molar volume were also measured for the ILs and R-134a. The Peng–Robinson Equation of State with van der Waals 2-parameter mixing rule with estimated IL critical points were employed to model and correlate the experimental data. The models predict the vapor–liquid equilibrium and vapor–liquid–liquid equilibrium pressure very well. However, the mixture critical points predictions are consistently lower than experimental values.  相似文献   

4.
We have theoretically investigated the hydrogen abstraction reactions of ethynyl radical with simple hydrogen compounds, C2H+HX, using quantum chemical computations. Computations have been performed using the density functional theory with the recently proposed MPW1K functional and the 6-311++G(3df,2p) basis set. An analysis of the resulting energy barriers for hydrogen abstraction reactions has been carried out using the bond dissociation energy of the breaking X–H bond and DFT-based reactivity parameters to rationalize the reaction behavior.  相似文献   

5.
The conformational potential energy surfaces for mono- and difluoromethyl formate have been determined by using a modified G2(MP2) level of calculations. The structures and vibrational frequencies for the conformers of mono- and difluoromethyl formate have been reported. The hydrogen abstraction reaction channels between these two formates and OH radicals have been studied at the same level of theory. Using the standard transition state theory and taking into account the effect of tunneling across the reaction barrier, we have estimated the rate constant for hydrogen abstraction by OH radical. The effect of successive fluorine substitution for methyl hydrogen on the conformational stability and on the hydrogen abstraction rate has been analyzed.  相似文献   

6.
Potential energy surfaces are developed and tested for the OH + CHF3 → H2O + CF3 reaction. The objective is to obtain surfaces that give calculated rate constants comparable to the experimental ones. The potential energy surfaces are constructed using hybrid and hybrid meta density functional theory methods (mPW1PW91, B1B95, and mPW1B95) with specific reaction parameters in conjunction with the 6–31+ G(d,p) basis set. The rate constants are calculated over the temperature range 200–1,500 K using variational transition state theory with multidimensional tunneling contributions. The hybrid density functional theory methods with specific-reaction-parameter Hartree-Fock exchange contributions (32.8–34.8% for mPW1PW91, 34.2–36.0% for B1B95, and 37.8–39.7% for mPW1B95, respectively) provide accurate rate constants over an extended temperature range. The classical barrier height for the hydrogen abstraction reaction is determined to be 6.5–6.9 kcal/mol on these potential energy surfaces, and the best estimate value is 6.77 kcal/mol. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

7.
A direct dynamics study is carried out for the hydrogen abstraction reactions Cl + CH(4-n)F(n) (n = 1-3) in the temperature range of 200-1,000 K. The minimum energy paths (MEPs) of these reactions are calculated at the BH&H-LYP/6-311G(d,p) level, and the energies along the MEPs are further refined at the QCISD(T)/6-311+G(2df,2p) and QCISD(T)/6-311+G(d,p) (single-point) level. The rate constants obtained by using the improved canonical variational transition state theory incorporating small-curvature tunneling correction (ICVT/SCT) are in good agreement with the available experimental results. It is shown that the vibrational adiabatic potential energy curves for these reactions have two barriers, a situation similar to the analogous reactions CH(3)X+Cl (X=Cl, Br). The theoretical results show that for the title reactions the variational effect should not be neglected over the whole considered temperature range, while the small-curvature tunneling effect is only important in the lower temperature range. The effects of fluorine substitution on the rate of this kind of reactions are also examined.  相似文献   

8.
分别在MP2/3-21G!!、CCSD(T)/3-21G!!//MP2/3-21G!!和B3LYP/3-21G!!3种水平上,计算研究了气相反应Cl2 2HI=2HCl I2的机理,求得一系列四中心和三中心的过渡态.通过比较六种反应通道的活化能大小,得到了相同的结论:双分子基元反应Cl2 HI"HCl ICl和ICl HI"I2 HCl的最小活化能小于Cl2、HI和ICl的解离能,从理论上证明了反应Cl2 2HI=2HCl I2将优先以分子与分子作用形式分两步完成.用内禀反应坐标(IRC)验证了MP2/3-21G!!方法计算得到的过渡态.  相似文献   

9.
分别在MP2/3-21G**、CCSD(T)/3-21G**//MP2/3-21G**和B3LYP/3-21G**3种水平上, 计算研究了气相反应Cl2+2HI=2HCl+I2的机理, 求得一系列四中心和三中心的过渡态. 通过比较六种反应通道的活化能大小, 得到了相同的结论:双分子基元反应Cl2+HIHCl+ICl和ICl+HII2+HCl的最小活化能小于Cl2、HI和ICl的解离能, 从理论上证明了反应Cl2+2HI=2HCl+I2将优先以分子与分子作用形式分两步完成. 用内禀反应坐标(IRC)验证了MP2/3-21G**方法计算得到的过渡态.  相似文献   

10.
Electronic energies, geometries, and harmonic vibration frequencies for the reactants, products, and transition state for the Cl(3P)+C2H6→C2H5+HCl abstraction reaction were evaluated at the HF and MP2 levels using several correlation consistent polarized-valence basis sets. Single-point calculations at PMP2, MP4, QCISD(T), and CCSD(T) levels were also carried out. The values of the forward activation energies obtained at the MP4/cc-pVTZ, QCISD(T)/cc-pVTZ, and CCSD(T)/cc-pVTZ levels using the MP2/cc-pVTZ structures are equal to −0.1, −0.4, and −0.3 kcal/mol, respectively. The experimental value is equal to 0.3±0.2 kcal/mol. We found that the MP2/aug-cc-pVTZ adiabatic vibration energy for the reaction (−2.4 kcal/mol) agrees well with the experimental value −(2.2–2.6) kcal/mol. Rate constants calculated with the zeroth-order interpolated variational transition state (IVTST-0) method are in good agreement with experiment. In general, the theoretical rate constants differ from experiment by, at most, a factor of 2.6.  相似文献   

11.
Ab initio calculations have been used to study the decomposition pathways of monofluo-roinethanol. Equilibrium geometries and transition state structures were optimized at the HF/6-31G(d) and MP2/6-31G(d) levels. Single point energies were obtained at different levels of theory. The most favorable reaction to dissociation is the 1,2-HF elimination which is consistent with the experimental results.  相似文献   

12.
The hydrogen abstraction reaction of the OH radical with CH(2)FCH(2)F (HFC-152) is studied theoretically over the 150-3000 K temperature range. In this study, the two most recently developed hybrid density functional theories, namely, BB1K and MPWB1K, are applied, and their efficiency in reaction dynamics calculation is discussed. The BB1K/6-31+G(d,p) method gives the best result for the potential energy surface (PES) calculations, including barrier heights, reaction path information (the first and second derivatives of PES), geometry of transition state structures, and even weak hydrogen bond orientations. The rate constants were obtained by the dual-level direct dynamics with the interpolated single-point energy method (VTST-ISPE) using the BB1K/MG3S//BB1K/6-31+G(d,p) quantum model. The canonical variational transition state theory (CVT) with the small-curvature tunneling correction methods are used to calculate the rate constants in comparison to the experimental data. The total rate constant and its temperature dependency in the form of a fitted three-parameter Arrhenius expression is k(T) = 5.4 x 10(-13)(T/298)3.13 exp{-322/T} cm3 molecule(-1) s(-1). A significant variational effect, which is not common generally for hydrogen-transfer reactions, is reported and analyzed.  相似文献   

13.
用QC ISD(T)/6-311 G(3DF,3PD)/MP2/6-311G(D,P)方法研究了H原子与CH3NH2的抽氢反应过程。该反应包含两个反应通道:H分别从CH3基团(R1)和NH2(R2)基团上抽氢。R1势垒比R2势垒低3.42kJ/mol,表明R1是主反应通道。在从头算的基础上,用变分过渡态理论(CVT)加小曲率隧道效应(SCT)研究了各反应温度范围为200~4000K内的速率常数,所得结果与实验值符合的很好。动力计算表明,在所研究的温度范围内,变分效应对速率常数的计算影响不大,而在低温范围内,隧道效应起了很重要的作用。  相似文献   

14.
The group contribution method for activation energies is applied to hydrogen abstraction reactions. To this end an ab initio database was constructed, which consisted of activation energies calculated with the ab initio CBS-QB3 method for a limited set of well-chosen homologous reactions. CBS-QB3 is shown to predict reaction rate coefficients within a factor of 2-4 and Arrhenius activation energies within 3-5 kJ mol(-1) of experimental data. Activation energies in the set of homologous reactions vary over 156 kJ mol(-1) with the structure of the abstracting radical and over 94 kJ mol(-1) with the structure of the abstracted hydrocarbon. The parameters required for the group contribution method, the so-called standard activation group additivity values, were determined from this database. To test the accuracy of the group contribution method, a large set of 88 additional activation energies were calculated from first principles and compared with the predictions from the group contribution method. It was found that the group contribution method yields accurate activation energies for hydrogen-transfer reactions between hydrogen molecules, alkylic hydrocarbons, and vinylic hydrocarbons, with the largest deviations being less than 6 kJ mol(-1). For reactions between allylic and propargylic hydrocarbons, the transition state is believed to be stabilized by resonance effects, thus requiring the introduction of an appropriate correction term to obtain a reliable prediction of the activation energy for this subclass of hydrogen abstraction reactions.  相似文献   

15.
High-level ab initio electronic structure calculations have been carried out with respect to the intermolecular hydrogen-transfer reaction HCOOH+.OH-->HCOO.+H(2)O and the intramolecular hydrogen-transfer reaction .OOCH2OH-->HOOCH(2)O.. In both cases we found that the hydrogen atom transfer can take place via two different transition structures. The lowest energy transition structure involves a proton transfer coupled to an electron transfer from the ROH species to the radical, whereas the higher energy transition structure corresponds to the conventional radical hydrogen atom abstraction. An analysis of the atomic spin population, computed within the framework of the topological theory of atoms in molecules, suggests that the triplet repulsion between the unpaired electrons located on the oxygen atoms that undergo hydrogen exchange must be much higher in the transition structure for the radical hydrogen abstraction than that for the proton-coupled electron-transfer mechanism. It is suggested that, in the gas phase, hydrogen atom transfer from the OH group to oxygen-centered radicals occurs by the proton-coupled electron-transfer mechanism when this pathway is accessible.  相似文献   

16.
Hydrogen abstraction from 2-aminoethanol by the 5'-deoxyadenosyl radical, which is formed upon Co--C bond homolysis in coenzyme B(12), was investigated by theoretical means with employment of the DFT (B3LYP) and ab initio (MP2) approaches. As a model system for the 5'-deoxyadenosyl moiety the computationally less demanding 1,5-dideoxyribose was employed; two conformers, which differ in ring conformation (C2- and C3-endo), were considered. If hydrogen is abstracted from "free" substrate by the C2-endo conformer of the 1,5-dideoxyribose-5-yl radical, the activation enthalpy is 16.7 kcal mol(-1); with the C3-endo counterpart, the value is 17.3 kcal mol(-1). These energetic requirements are slightly above the activation enthalpy limit (15 kcal mol(-1)) determined experimentally for the rate-determining step of the sequence, that is, hydrogen delivery from 5'-deoxyadenosine to the product radical. The activation enthalpy is lower when the substrate interacts with at least one amino acid from the active site. According to the computations, when a His model system partially protonates the substrate the activation enthalpy is 4.5 kcal mol(-1) for the C3-endo conformer and 5.8 kcal mol(-1) for the C2-endo counterpart. As hydrogen abstraction from the fully as well as the partially protonated substrate is preceded by the formation of quite stable encounter complexes, the actual activation barriers are around 13-15 kcal mol(-1). A synergistic interaction of 2-aminoethanol with two amino acids where His partially protonates the NH(2) group and Asp partially deprotonates the OH group of the substrate results in an activation enthalpy of 12.4 kcal mol(-1) for the C3-endo conformer and 13.2 kcal mol(-1) for the C2-endo counterpart. However, if encounter complexes exist in the active site, the actual activation barriers are much higher (>25 kcal mol(-1)) than that reported for the rate-determining step. These findings together with previous computations suggest that the energetics of the initial hydrogen abstraction decrease with an interaction of the substrate with only a protonating auxiliary, but for the rearrangement of the radical the synergistic effects of two auxiliaries are essential to pull the barrier below the limit of 15 kcal mol(-1).  相似文献   

17.
《Fluid Phase Equilibria》2002,193(1-2):29-39
Isothermal vapor–liquid equilibrium data were determined for the binary systems of 1,1,1-trifluoroethane (HFC-143a)+1,1,1,2-tetrafluoroethane (HFC-134a) and 1,1,1-trifluoroethane (HFC-143a)+1,1-difluoroethane (HFC-152a) at 273.15, 293.15, 303.15, and 313.15 K in a circulation-type equilibrium apparatus. The experimental data were well correlated with the Carnahan–Starling–De Santis (CSD) equation of state within ±1.0%. Azeotropic behavior has not been found in any of these mixtures.  相似文献   

18.
The OH hydrogen abstraction and addition with ethylbenzene have been studied in the range 298–1000 K using quantum chemistry methods. The geometries and frequencies of the reactants, transition states, and products were performed at BH and HLYP/6‐311++G(d,p) level, single point calculation for all the stationary points were carried out at CCSD(T) calculations of the optimized structures with the same basis set. Nine different reaction paths are considered corresponding to two side chain, three possible ring hydrogen abstraction, and four kinds different OH addition. The results of the theoretical study indicate that at the room temperature the reaction proceeds almost exclusively through OH addition, and is predicted to occur dominantly at the ortho position, the calculated overall rate constant is 6.72 × 10?12 cm3 molecule?1 s?1, showing a very good agreement with available experimental data. Although negligible at low temperature, at 1000 K ring hydrogen abstraction accounts for about 32% of the total abstraction reaction, and the whole hydrogen abstraction makes up for 30% of the total reaction. This study may provide useful information on understanding the mechanistic features of OH‐initiated oxidation of ethylbenzene. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

19.
在B3LYP/6-311+G(3df,2p)水平上对HS和HOO反应中的所有物种进行了几何构型优化和频率计算,采用QCISD(T)/6-311+G(3df,2p)方法获得了各物种的单点能,构建了HS和HOO反应在单、三重态势能剖面.结果表明,HS与HOO反应体系中存在2种不同的抽氢通道,在单、三重态势能面上生成的产物分别为[1P1(H2O2+1S),1P2(H2S+1 O2)]和[3P1(H2O2+3S),3P2(H2S+3O2)].标题反应主要发生在三重态势能面上,优势通道[R→3 TS2→3P2(H2S+3O2)]的活化能为9.99kJ·mol-1.此结果对认识大气硫迁移转变规律具有实际意义.  相似文献   

20.
The rate constants of the direct and reverse exchange reactions of the hydrogen atom in the system sterically-hindered nitroxyl radical-hydroxylamine of the quinoline, imidazoline, pyrrolidine, and piperidine series as well as diarylhydroxylamine were determined. A scale of the reductive abilities of the hydrolamines was established. A low value of the isotope effect is typical of the reactions of hydrogen exchange in the systems hydroxylamine-nitroxyl radical. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1324–1328, July, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号