首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mo(CO)6 can be useful as a precursor for the preparation of Mo and MoSx nanoparticles on a Au(1 1 1) substrate. On this surface the carbonyl adsorbs intact at 100 K and desorbs at temperatures lower than 300 K. Under these conditions, the dissociation of the Mo(CO)6 molecule is negligible and a desorption channel clearly dominates. An efficient dissociation channel was found after dosing Mo(CO)6 at high temperatures (>400 K). The decomposition of Mo(CO)6 yields the small coverages of pure Mo that are necessary for the formation of Mo nanoclusters on the Au(1 1 1) substrate. At large coverages of Mo (>0.15 ML), the dissociation of Mo(CO)6 produces also C and O adatoms. Mo nanoclusters bonded to Au(1 1 1) exhibit a surprising low reactivity towards CO. Mo/Au(1 1 1) surfaces with Mo coverages below 0.1 ML adsorb the CO molecule weakly (desorption temperature<400 K) and do not induce C–O bond cleavage. These systems, however, are able to induce the dissociation of thiophene at temperatures below 300 K and react with sulfur probably to form MoSx nanoparticles. The formed MoSx species are more reactive towards thiophene than extended MoS2(0 0 0 2) surfaces, MoSx films or MoSx/Al2O3 catalysts. This could be a consequence of special adsorption sites and/or distinctive electronic properties that favor bonding interactions with sulfur-containing molecules.  相似文献   

2.
The nature of the interaction of isocyanic acid (HNCO) with the active centers at the ideal anatase TiO2 (1 0 1) surface were studied using ab initio density functional theory (DFT) method with a cluster model. Two types of adsorption of isocyanic acid are found to be likely at (1 0 1) surface – dissociative and molecular adsorption. Only molecular adsorption of HNCO leads to the direct weakening and further splitting of the NC bond, which is a necessary step for the hydrolysis of isocyanic acid. During molecular adsorption of HNCO, an energetically stable intermediate surface complex is created with an adsorption energy of −1.33 eV, in which the HNCO skeleton is changing due to new strong bonds between C–Os and N–Tis. Based on the existence of this intermediate complex a probable reaction pathway for the hydrolysis of HNCO over the ideal anatase (1 0 1) surface was developed. A surface oxygen vacancy was formed after the decomposition of the intermediate complex and CO2 desorption. Afterwards, water adsorbs at the oxygen vacancy site and NH3 is successively formed. The HNCO hydrolysis over TiO2 was found to be energetically favorable with global energy gain of about −2.08 eV.  相似文献   

3.
4.
We have characterized the structural behaviour of ethanethiol self-assembled monolayers (SAMs) on Au(1 0 0) in 0.1 M H2SO4 as a function of electrode potential, using in-situ scanning tunneling microscopy (STM). After modification of the Au(1 0 0) electrode in an ethanolic solution of ethanethiol, STM images in air reveal a disordered thiol adlayer and a surface that is covered by 25% of monoatomic high gold islands, which originate from lifting of the (hex) reconstruction during thiol adsorption. In contrast to alkanethiol SAMs on Au(1 1 1), no vacancy islands are seen on the Au(1 0 0) surface. After contact of the SAM-covered Au(1 0 0) electrode with 0.1 M H2SO4 under potential control, two different structures are observed, depending on the potential range positive or negative of +0.3 V vs. SCE. In both cases the emerging ordered structures are quadratic, their unit cells being rotated by 45° with respect to the main crystallographic axes of the substrate. However, the ordered structure at negative potentials is more densely packed than the one at positive potentials, and in addition the surface reveals an almost 50% coverage of monoatomic high gold islands. The structure of the SAM changes reversibly with the electrode potential, the long range order gradually decreasing with each transition. Concomittant with this structure transition monoatomic deep holes are created when the potential is stepped from the cathodic to the anodic region. The experimental observations are rationalized by a high mobility of the gold thiolate moiety, causing the surface density of the SAM-covered gold to change drastically with potential.  相似文献   

5.
Adsorption and decomposition of triethylindium (TEI: (C2H5)3In) on a GaP(0 0 1)-(2×1) surface have been studied by low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). It is found from the TPD result that ethyl radical and ethylene are evolved at about 300–400 and 450–550 K, respectively, as decomposition products of TEI on the surface. This result is quite different from that on the GaP(0 0 1)-(2×4) surface. The activation energy of desorption of ethyl radical is estimated to be about 93 kJ/mol. It is suggested that TEI is adsorbed molecularly on the surface at 100 K and that some of TEI molecules are dissociated into C2H5 to form P–C2H5 bonds at 300 K. The vibration modes related to ethyl group are decreased in intensity at about 300–400 and 450–550 K, which is consistent with the TPD result. The TEI molecules (including mono- and di-ethylindium) are not evolved from the surface. Based on the TPD and HREELS results, the decomposition mechanism of TEI on the GaP(0 0 1)-(2×1) surface is discussed and compared with that on the (2×4) surface.  相似文献   

6.
To evaluate the interactions between the atoms of Au, Ag and Cu and clean Si(1 1 1) surface, two types of silicon clusters Si4H7 and Si16H20 together with their metal complexes were studied by using hybrid (U)B3LYP density functional theory method. Optimized geometries and energies on different adsorption sites indicate that: (1) the binding energies at different adsorption sites are large (ranging from 1.2 to 2.6 eV depend on the metal atoms and adsorption sites), suggesting a strong interaction between metal atom and silicon surface; (2) the most favorable adsorption site is the on top (T) site. Mulliken population analysis indicated that in the system of on top (T) site, a covalent bond is formed between metal atom and dangling bond of surface Si atom.  相似文献   

7.
In an attempt to identify the fundamental processes that influence ion transport through metallic surface layers, we have studied the transmission of O+ ions through discontinuous Au films adsorbed on TiO2(110). A low energy (< 10 eV) O+ ion beam is generated via electron stimulated desorption when an Au-dosed TiO2(110) substrate is bombarded with a focused 250 eV electron beam. Low energy ion scattering data indicate that Au evaporated under ultrahigh vacuum conditions at 300 K forms three-dimensional clusters on TiO2(110). As the Au coverage increases, the formation of Au clusters on TiO2(110) blocks a fraction of the TiO2 surface and the O+ yield is attenuated. However, for high coverages (≥30% Au covered substrate) the O+ signal decreases at a faster rate than the TiO2 open area fraction. We attribute the attenuation of the O+ yield for high Au coverages mainly to blocking of O+ by Au clusters, to deflection of trajectories by the image force between ions and Au clusters, and to charge transfer between desorbing O+ and neighboring Au clusters.  相似文献   

8.
N. Saliba  D. H. Parker  B. E. Koel   《Surface science》1998,410(2-3):270-282
Atomic oxygen coverages of up to 1.2 ML may be cleanly adsorbed on the Au(111) surface by exposure to O3 at 300 K. We have studied the adsorbed oxygen layer by AES, XPS, HREELS, LEED, work function measurements and TPD. A plot of the O(519 eV)/Au(239 eV) AES ratio versus coverage is nearly linear, but a small change in slope occurs at ΘO=0.9 ML. LEED observations show no ordered superlattice for the oxygen overlayer for any coverage studied. One-dimensional ordering of the adlayer occurs at low coverages, and disordering of the substrate occurs at higher coverages. Adsorption of 1.0 ML of oxygen on Au(111) increases the work function by +0.80 eV, indicating electron transfer from the Au substrate into an oxygen adlayer. The O(1s) peak in XPS has a binding energy of 530.1 eV, showing only a small (0.3 eV) shift to a higher binding energy with increasing oxygen coverage. No shift was detected for the Au 4f7/2 peak due to adsorption. All oxygen is removed by thermal desorption of O2 to leave a clean Au(111) surface after heating to 600 K. TPD spectra initially show an O2 desorption peak at 520 K at low ΘO, and the peak shifts to higher temperatures for increasing oxygen coverages up to ΘO=0.22 ML. Above this coverage, the peak shifts very slightly to higher temperatures, resulting in a peak at 550 K at ΘO=1.2 ML. Analysis of the TPD data indicates that the desorption of O2 from Au(111) can be described by first-order kinetics with an activation energy for O2 desorption of 30 kcal mol−1 near saturation coverage. We estimate a value for the Au–O bond dissociation energy D(Au–O) to be 56 kcal mol−1.  相似文献   

9.
A complete inspection of the capabilities of reflectance anisotropy spectroscopy (RAS) in studying the adsorption of molecules or atoms on the Si(0 0 1)-(2 × 1) surface is presented. First, a direct comparison between RA spectra recorded on the clean Si(0 0 1)-(2 × 1) and the corresponding topography of the surface obtained using scanning tunneling microscopy (STM) allows us to quantify the mixing of the two domains that are present on the surface. Characteristic RA spectra recorded for oxygen, hydrogen, water, ethylene, benzene are compared to try to elucidate the origin of the optical structures. Quantitative and qualitative information can be obtained with RAS on the kinetics of adsorption, by monitoring the RA signal at a given energy versus the dose of adsorbate; two examples are presented: H2/Si(0 0 1) and C6H6/Si(0 0 1). Very different behaviours in the adsorption processes are observed, making of this technique a versatile tool for further investigations of kinetics.  相似文献   

10.
Oligo(phenyleneethynylene) (OPE) compounds have been identified as promising molecular electronic bridges. Self-assembled monolayers of 4″-trimethylsilylethylsulfanyl-4,4′-phenyleneethynylenebenzene thiol (OPE′) on Au were characterized by surface-enhanced Raman scattering (SERS). The FT-Raman spectrum of OPE′ shows three C–S bands at 834, 1086, and 1131 cm−1. From the FT-Raman to the SERS spectra, the 1086 cm−1 band exhibits a 9 cm−1 red shift. Chemisorption of OPE′ to the gold surface occurs via oxidative cleavage of the disulfide bond and the formation of the Au–S bond. The Au–S vibration is visible in the SERS spectra at 257 cm−1. Peaks due to the S–S and S–H stretch are observed at 544 and 2519 cm−1, respectively, in the FT spectrum, but are unobserved in the surface-enhanced spectra. The C–H stretching region (2700–3350 cm−1) in the spectrum of neat OPE′ shows three distinct bands, whereas the SERS spectra show a single broad band. Assignments of vibrational bands were based on DFT calculations performed at the B3LYP level with good agreement between theoretical and experimental values. An average percent difference of 2.52 was obtained for the non-CH stretching frequencies.  相似文献   

11.
The textural properties, morphological features, surface basicity and oxygen reduction behaviours of titania and Pt supported titania catalysts synthesized via a sol–gel method were studied by means of N2 physisorption, SEM, TEM, CO2-TPD and H2-TPR techniques. Mesostructured TiO2 shows a very narrow pore size distribution that uniformly centred at about 4 nm. High resolution TEM images confirmed that most of Pt particles on Pt/TiO2-SG had a size smaller than 2 nm. Both the titania support and Pt loaded catalysts chiefly contained weak basic sites with small amount of strong basic sites. Loading Pt did not significantly alter the surface reduction characters of titania, indicating a weak interaction between Pt metals and titania support. Catalytic evaluation revealed that the selectivity of NO reduction over titania was insensitive to variation of textural property. On the bare titania, low NO conversion but high selectivity to N2O was obtained. However, the Pt/TiO2-SG catalysts exhibited high NO conversion and high selectivity to N2, which is assumed to relate to NO dissociation catalysed by the metallic Pt clusters. In addition, when the reaction temperature was above 200 °C, 3–11% NO2 was yielded over the Pt/TiO2-SG catalysts, which was discussed on a basis of reaction competition, metal-support interaction and NO dissociation.  相似文献   

12.
The interaction of SO2 with oxygen-sputtered Au(1 1 1) (θoxygen  0.35 ML) was studied by monitoring the oxygen and sulfur coverages as a function of SO2 exposure. The morphology of the sputtered Au is relatively smooth on a long length scale, but rough on a finer scale with islands averaging 15 nm. The rough surface is not stable to scanning with the STM. Two reaction regimes were observed: oxygen depletion followed by sulfur deposition. An enhanced, transient sulfur deposition rate is observed at the oxygen depletion point. This effect is specifically pronounced if the Au surface is continuously exposed to SO2. The enhanced reactivity towards S deposition seems to be linked to the presence of highly reactive, under-coordinated Au atoms. Adsorbed oxygen appears to stabilize, but also to block these sites. In absence of the stabilization effect of adsorbed oxygen, i.e. at the oxygen depletion point, the enhanced reactivity decays on a timescale of a few minutes. These observations shed a new light on the catalytic reactivity of highly dispersed gold nanoparticles.  相似文献   

13.
Here we present the characteristic signatures in X-ray absorption and photoemission spectroscopy for molecular damage in adsorbed monolayers of bi-isonicotinic acid on a rutile TiO2(1 1 0) surface. Bi-isonicotinic acid is the anchor ligand through which many important inorganic complexes are bound to the surface of TiO2 in dye-sensitized solar cells. The nature of the damage caused by excessive heating of the adsorbed monolayer is consistent with splitting the molecule into two adsorbed isonicotinic acid molecular fragments. The effect on the lowest unoccupied molecular orbitals (involved in electron transfer in the molecule) can be understood in terms of the adsorption geometry of the reaction products and their nearest neighbor interactions.  相似文献   

14.
Synchrotron radiation photoelectron spectroscopy (SRPES) has been used to study the electronic structure of the Au/GaN(0 0 0 1) system at the initial growth stage. The peak fitting of Au4f7/2 core-level and the energy shift of valence band indicate that Au–Ga alloy were formed in the interface reaction. According to the Ga3d signal intensity attenuation vs. the gold film thickness, the early growth mode is considered to be 3D mode above the reaction layer. By using the Linear Augmented Plane Wave method the density of states (DOS) for GaN and Au bulk are calculated within the framework of local functional theory. The theoretical results agree with the valence band structure quite well. The mechanism of interface reaction is discussed based on the experimental and theoretical results.  相似文献   

15.
Submonolayer to multilayer coadsorption of lanthanum (La) with boron (B) and gadolinium (Gd) with boron on the surface of Mo(1 1 0) has been studied by means of Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS) and work function () measurements. The equilibrium state of double adsorbate systems achieved either by adsorption of rare-earth metal (REM) on boron precovered Mo(1 1 0) surface held at room temperature or after moderate annealing of the system with opposite order of adsorption (B on REM films) is the layer which is the inhomogeneous mixture of boron and REM atoms with preferential concentration of boron in the surface area of the mixed film. The work function of such films even at REM to boron concentration ratio much higher than 1/6 are very close to the values of corresponding bulk LaB6 and GdB6, favoring assumption of surface rearrangement as the dominant reason of high electron emission efficiency of hexaborides. Almost total similarity of the results for La–B and Gd–B systems can be viewed as the consequence of weak participation of Gd f-electrons in determining the thermionic properties of corresponding double layers.  相似文献   

16.
The chemisorption of one monolayer Ag atoms on an ideal Si(1 0 0) surface is studied by using the self-consistent tight-binding linear muffin-tin orbital method. The adsorption energies (Ead) of different sites are calculated. It is found that the adsorbed Ag atoms are more favorable on C site (fourfold site) than on any other sites on Si(1 0 0) surface, the polar covalent bond is formed between Ag atom and surface Si atom, a Ag and Si mixed layer does not exist and does form an abrupt interface at the Ag–Si(1 0 0) interface. This is in agreement with the experiment results. The layer-projected density of states is calculated and compared with that of the clean surface. The charge transfer is also investigated. Comparing with the Au/Si(1 0 0) system, the interaction is weaker between Ag and Si than between Au and Si.  相似文献   

17.
The electronic structure and the growth morphology of iron oxide thin films were studied by means of Synchrotron Radiation Photoelectron Spectroscopy (SRPES) and Low Energy Electron Diffraction (LEED). A thin well-ordered alumina film on a NiAl(1 1 0) single crystal surface as a template for iron oxide growth was employed. Two different methods of iron oxide film preparation were applied. In the first attempt, iron deposited at room temperature was subsequently annealed in oxygen. Even though a whole layer of iron was oxidized, an expected long-range order was not achieved. The second attempt was to perform reactive deposition. For this reason iron was evaporated in oxygen ambient at elevated substrate temperature. This method turned out to be more efficient. Diffused but clear LEED patterns of six-fold symmetry indicating hexagonal surface atoms arrangement were observed. From the PES measurements, binding energies for Fe2p for grown iron oxide film were established as well as energy distribution curves for the valence band. Growth curves based on Fe3p core-level peak intensities for iron and iron oxide were plotted identifying type of film growth for both deposition methods. Based upon these results we have found evidence for interdiffusion in the interface between alumina and iron oxide at the early stages of growth. Further deposition led to formation of Fe3O4(1 1 1) (magnetite) overlayer. Moreover, the quality of the film could also be improved by long-time annealing at temperatures not exceeding 575 K. Higher annealing temperature caused disappearance of LEED pattern indicating loss of long-range ordering.  相似文献   

18.
J. Oviedo  M. J. Gillan   《Surface science》2001,490(3):221-236
First-principles calculations based on density functional theory in the generalised gradient approximation, together with pseudopotentials and plane-wave basis sets, have been used to investigate the energetics of oxygen adsorption on stoichiometric and weakly and strongly reduced SnO2(1 1 0) surfaces. It is shown that, if the surface species formed by oxygen adsorption are restricted to be charge neutral, then oxygen cannot be exothermically adsorbed from the gas phase on the stoichiometric surface. A variety of molecular and dissociative modes of adsorption are examined on the reduced surface produced by removing all bridging oxygens and on the weakly reduced surface that results from removal of only a fraction of these oxygens, with the adsorbed species being in both the singlet and the triplet states, and we identify a number of modes not discussed before in the literature. We use the calculated adsorption energies to propose a tentative assignment of these adsorption modes to the peaks observed in temperature programmed desorption experiments on the SnO2 and TiO2(1 1 0) surfaces.  相似文献   

19.
The interaction of CCl4 molecules with Fe(0 0 1) surfaces was investigated by spin-polarized ion scattering spectroscopy (SP-ISS). It was observed that CCl4 molecules adsorb dissociatively on the surface at ambient temperature (290 K), and consequently, iron and chlorine were major surface constituents. It was found that the chlorine adatoms are located atop of iron atoms of the second surface layer (hollow sites of the surface). It is indicated that the spin state of iron atoms at the surface is not affected by exposure to a CCl4 atmosphere, while almost no spin is induced in the chlorine adatoms. Similar behavior is observed in the spin states of iron and chlorine on an oxygen preadsorbed-Fe(0 0 1) surface. The difference in the spin states of iron and chlorine clarifies the local property of the incidence ion neutralization and element selectivity of SP-ISS in this CCl4/Fe system.  相似文献   

20.
We have used transmission electron microscopy to study catalysts comprising nanoparticulate gold dispersed on a highly porous nanoparticulate TiO2 (anatase) support. The similarity of the morphology of the two phases, and the low number density of gold particles (1 in 65,000) makes this challenging. Diffraction contrast imaging could not differentiate the two phases, since TiO2 oriented at strong Bragg conditions, produced similar contrast to the Bragg/mass-thickness contrast of the gold. Mass-thickness contrast imaging allowed gold to be differentiated from TiO2 only in the thinnest regions, where the mass-thickness of TiO2 was low. Plasmon imaging, using an energy loss of 24 eV and an energy window width of 5 eV, was very effective at locating gold. Both the TiO2 and impregnating resin produced a strong plasmon signal, while the much weaker signal from the gold made it appear dark. This permitted the gold particles to be readily located, irrespective of whether they were located in the thin or thick regions of the TiO2 support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号