首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using single crystalline Si wafer substrates, ion-assisted deposition (IAD) has recently been shown [J. Crystal Growth 268 (2004) 41] to be capable of high-quality high-rate epitaxial Si growth in a non-ultra-high vacuum (non-UHV) environment at low temperatures of about 600 °C. In the present work the non-UHV IAD method is applied to planar borosilicate glass substrates featuring a polycrystalline silicon seed layer and carefully optimised. Using thin-film solar cells as test vehicle, the best trade-off between various contamination-related processes (seed layer surface as well as bulk contamination) is determined. In the optimised IAD process, the temperature of the glass substrate remains below 600 °C. The as-grown Si material is found to respond well to post-growth treatments (rapid thermal annealing, hydrogenation), enabling respectable open-circuit voltages of up to 420 mV under 1-Sun illumination. This proves that the non-UHV IAD method is capable of achieving device-grade polycrystalline silicon material on seeded borosilicate glass substrates.  相似文献   

2.
We have studied the impact of several Si selective epitaxial growth (SEG) process on the agglomeration of ultra-thin, patterned silicon-on-insulator (SOI) layers. Through a careful analysis of the effects of the in situ H2 bake temperature (that followed an ex situ “HF-last” wet cleaning) and of the silicon growth temperature on the SOI film quality, we have been able to develop a low-temperature SEG process that allows the growth of Si on patterned SOI layers as thin as 3.4 nm without any agglomeration or Si moat recess at the Si window/shallow trench isolation edges. This process consists of an in situ H2 bake at 650 °C for 2 min, followed by a ramping-up of the temperature to 750 °C, then some SEG of Si at 750 °C using a chlorinated chemistry (i.e. SiH2Cl2+HCl).  相似文献   

3.
Deposition of sub-monolayer silicon on SiO2/Si(1 0 0) greatly facilitates nucleation in subsequent thermal chemical vapor deposition (CVD) of silicon nanoparticles. Sub-monolayer seeding is accomplished using silicon atoms generated via disilane decomposition over a hot tungsten filament. The hot-wire process is nonselective towards deposition on silicon and SiO2, is insensitive to surface temperature below 825 K, and gives controlled coverages well below 1 ML. Thermal CVD of nanoparticles at 1×10−4 Torr disilane and temperatures ranging from 825 to 925 K was studied over SiO2/Si(1 0 0) surfaces that had been subjected to predeposition of Si or were bare. Seeding of the SiO2 surface with as little as 0.01 ML is shown to double the nanoparticle density at 825 K, and densities are increased twenty fold at 875 K after seeding the surface with 30% of a monolayer.  相似文献   

4.
Indium nitride (InN) layers were grown on (1 1 1) silicon substrates by reactive magnetron sputtering using an indium target. Atomic force microscope, X-ray diffraction, and Raman spectroscopy analysis revealed that highly c-axis preferred wurtzite InN layers with very smooth surface can be obtained on (1 1 1) silicon substrates at a substrate temperature as low as 100 °C. The results indicate that the reactive sputtering is a promising growth technique for obtaining InN layers on silicon substrates at low substrate temperature with low cost and good compatibility with microelectronic silicon-based devices.  相似文献   

5.
Epitaxial MgO films were grown on Si(1 1 1) substrates at 800°C using methylmagnesium tert-butoxide (MeMgOtBu) as a single precursor under high-vacuum conditions (5×10−6 Torr). The crystalline structure, morphology, and chemical composition of the deposited films were investigated by X-ray diffraction, X-ray pole figure analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy. The results show that epitaxial MgO films with correct stoichiometry can be deposited on Si(1 1 1) at 800°C. The single precursor methylmagnesium tert-butoxide has been found suitable for the epitaxial growth of MgO on Si(1 1 1) substrates.  相似文献   

6.
Lateral, single-crystalline silicon nanowires were synthesized using chemical vapor deposition catalyzed by gold nanoparticles deposited on one of the vertical {1 1 1} sidewalls of trenches etched in Si(0 1 1) substrates. Upon encountering the opposing sidewalls of the trenches, the lateral nanowires formed a mechanically strong connection. The bridging connection at the opposing sidewall was observed using high-resolution transmission electron microscopy (TEM) to be epitaxial and unstrained silicon-to-silicon. Using energy-dispersive X-ray spectroscopy in TEM, gold could not be detected at the interface region where the nanowires formed a connection with the opposing sidewall silicon deposit but was detected on the surface adjacent to the impingement region. We postulate that a silicon-to-silicon connection is formed as the gold–silicon liquid eutectic is forced out of the region between the growing nanowire and the opposing sidewall.  相似文献   

7.
Silicon oxide has been grown by rapid thermal processing. The growth rate, in the range of very thin films (<10 nm), has been studied as a function of the oxidation temperature. Combined films composed by conventional thermal silicon oxide growth over SiO2 passivation layer deposited by rapid thermal processing onto Si(1 0 0) substrates have been used as gate oxide of p-channel metal-oxide semiconductor (p-MOS) transistors of dynamic random access memory (DRAM). The effect of rapid thermal annealing treatments on these films has also been experimented. Improvements in the electrical performances of transistors have been observed.  相似文献   

8.
Two-dimensional (2D) periodic arrays of Co metal and Co silicide nanodots were successfully fabricated on (0 0 1)Si substrate by using the polystyrene (PS) nanosphere lithography (NSL) technique and thermal annealing. The epitaxial CoSi2 was found to start growing in samples after annealing at 500 °C. The sizes of the Co silicide nanodots were observed to shrink with annealing temperature. From the analysis of the selected-area electron diffraction (SAED) patterns, the crystallographic relationship between the epitaxial CoSi2 nanodots and (0 0 1)Si substrates was identified to be [0 0 1]CoSi2//[0 0 1]Si and (2 0 0)CoSi2//(4 0 0)Si. By combining the planview and cross-sectional TEM examination, the epitaxial CoSi2 nanodots formed on (0 0 1)Si were found to be heavily faceted and the shape of the faceted epitaxial CoSi2 nanodot was identified to be inverse pyramidal. The observed results present the exciting prospect that with appropriate controls, the PS NSL technique promises to offer an effective and economical patterning method for the growth of a variety of large-area periodic arrays of uniform metal and silicide nanostructures on different types of silicon substrates.  相似文献   

9.
T. Fu  Y.G. Shen  Z.F. Zhou 《Journal of Non》2008,354(27):3235-3240
Amorphous carbon nitride (CNx) films with silicon addition up to 16 at.% are sputter deposited on Si(1 0 0) substrate, and the surface morphology is studied with scaling method based on atomic force microscopy. The surface roughness σ, the roughness exponent α, and the lateral correlation length ξ decrease with silicon content of the films, reaching 0.33 nm, 0.80 and 50 nm, respectively, for the film with [Si] = 16 at.%. The addition of silicon in the films leads to additional Si-N, Si-C-N and CN bonds revealed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The films undergo a structural transition from columnar to smooth morphology in cross-section with silicon addition demonstrated by field emission scanning electron microscopy. Nano-sized clusters sparsely dispersed in amorphous matrix of the film with [Si] = 16 at.% are observed by high-resolution transmission microscopy. According to the surface growth mechanism in which surface diffusion and geometrical shadowing drive structural and morphological evolution of the sputter deposited films, surface smoothing of the amorphous CNx films by silicon addition is explained by the formation of Si-N and Si-C-N bonds that impede surface diffusion of the adsorbed species during film growth, which leads to the reduced size of the columnar structures.  相似文献   

10.
The vertical and epitaxial growth of long (up to a few microns) silicon nanowires on Si(1 1 1) substrates by electron beam evaporation (EBE) (10−6–10−7 mbar) is demonstrated at temperatures between 600 and 700 °C following the vapour–liquid–solid (VLS) growth mechanism from gold nanoparticles. The silicon atoms are provided by evaporating silicon at varying evaporation currents (IE) between 35 and 80 mA, which results in growth rates between 1 and 100 nm/min. The growth peculiarities in the interaction triangle, evaporation current (IE), growth temperature (TS) and gold layer thickness (dAu) will be reported. Kinetic and energetic contributions to the morphology of silicon nanowires will be discussed.  相似文献   

11.
Nucleation and growth of wurtzite AlN layers on nominal and off-axis Si(0 0 1) substrates by plasma-assisted molecular beam epitaxy is reported. The nucleation and the growth dynamics have been studied in situ by reflection high-energy electron diffraction. For the films grown on the nominal Si(0 0 1) surface, cross-sectional transmission electron microscopy and X-ray diffraction investigations revealed a two-domain film structure (AlN1 and AlN2) with an epitaxial orientation relationship of [0 0 0 1]AlN || [0 0 1]Si and AlN1 || AlN2 || [1 1 0]Si. The epitaxial growth of single crystalline wurtzite AlN thin films has been achieved on off-axis Si(0 0 1) substrates with an epitaxial orientation relationship of [0 0 0 1]AlN parallel to the surface normal and 0 1 1 0AlN || [1 1 0]Si.  相似文献   

12.
We report the effect of annealing on the properties of amorphous hydrogenated silicon carbide thin films. The samples were deposited onto different substrates by plasma enhanced chemical vapor deposition at temperatures between 300 and 350 °C. The gaseous mixture was formed by silane and methane, at the ‘silane starving plasma regime’, and diluted with hydrogen. Rutherford backscattering and Fourier transform infrared spectrometry were used, respectively, to determine the atomic composition and chemical bonds of the samples. The film’s structure was analyzed by means of X-ray absorption fine structure and X-ray diffraction. For temperatures higher than 600 °C, amorphous silicon carbide films annealed under inert atmosphere (Ar or N2) clearly changed their structural and compositional properties due to carbon loss and oxidation, caused by the presence of some oxygen in the annealing system. At 1000 °C, crystallization of the films becomes evident but only stoichiometric films deposited on single crystalline Si[1 0 0] substrates presented epitaxial formation of SiC crystals, showing that the crystallization process is substrate dependent. Films annealed in high-vacuum also changed their structural properties for annealing temperatures higher than 600 °C, but no traces of oxidation were observed or variations in their silicon or carbon content. At 1200 °C the stoichiometric films are fully polycrystalline, showing the existence of only a SiC phase. The XANES signal of samples deposited onto different substrates and annealed under high-vacuum also show that crystallization is highly substrate dependent.  相似文献   

13.
GaN nano‐ceramics were analyzed using transmission electron microscopy (TEM), showing that these ceramics are characterized by highly disoriented grains of the linear size of 100–150 nm. These GaN ceramics were used as substrates for GaN epitaxy in standard MOVPE conditions. For the comparison, MOVPE GaN layers on silicon substrates were grown using similar conditions. It is shown that MOVPE growth of GaN layers is highly anisotropic for both cases. However, the disorientation of the highly mismatched GaN layer on silicon is different from that characterizing GaN layer deposited on the ceramic substrate. In the latter case the disorientation is much higher, and three dimensional in nature, causing creation of polycrystalline structure having large number of the dislocations. In the case of the GaN layer grown on the silicon substrate the principal disorientation is due to rotation around c‐axis, causing creation of mosaic structure of edge dislocations. Additionally, it is shown that the typical grain size in AlN nucleation layer on Si is smaller, of order of 20 nm. These two factors contribute to pronounced differences in later stage of the growth of GaN layer on the ceramic. Due to high growth anisotropy an appropriately thick GaN layer can, eventually, develop flat surfaces suitable for construction of optoelectronic and electronic structures. As shown by the TEM data, this can be achieved only at the cost of creation of the relatively large density of dislocations and stacking faults. The latter defects were not observed for the GaN growth on Si substrates. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Gold dot arrays on (1 1 1) Si substrates obtained through nanosphere lithography (NSL) combined with sputtering and annealing in Ar at 1000 °C are used to catalyze vapor liquid solid (VLS) epitaxial growth of silicon nanowires (Si NWs) using chemical vapor deposition (CVD) with SiH4 in Ar. The NWs grow primarily epitaxially on the underlying (1 1 1) Si wafer following the four independent 〈1 1 1〉 directions. The diameter distribution of the wires reflects the diameter distribution of the catalyst gold dot arrays and is therefore predictable. The wire length depends on the size of the gold catalyst for the same CVD parameters. The wire position is foreseeable within the limits of the pattern geometrical quality, but one-to-one growth of NWs to gold dots is not always observed, probably due to (very locally) the remaining presence of silicon oxide. Overall, this inexpensive patterning method for obtaining high-quality crystalline VLS Si NWs by CVD fulfills the requirements of many device applications, where patterning control, quality and reproducibility of the nanostructures are crucial.  相似文献   

15.
Experiments have been carried out to determine the nature and origin of the spots growing on silica glass surfaces in contact with liquid silicon during CZ–Si crystal growth. Silica glass ampoules were filled with silicon and tempered between 5 min and 40 h at a temperature (1693 K) slightly above the melting point of silicon. Cross sections of the ampoules with solidified silicon have been examined by scanning electron microscopy and optical polarization microscopy. In addition cross sections from commercial silica glass crucibles used in the Czochralski process or dipped into the silicon melt were investigated with the same methods. At the silicon/silica glass interface different reaction zone morphologies were detected. A solution-precipitation mechanism is suggested for the fast lateral growth of the reaction zone, which is proposed to consist of small cristobalite crystals embedded in a silica glass matrix.  相似文献   

16.
An Shih  Si-Chen Lee 《Journal of Non》1999,260(3):245-247
Hydrogenated amorphous silicon (a-Si:H) thin films grown at 250°C on (1 0 0) crystalline substrate using plasma-enhanced chemical vapor deposition (PECVD) with SiH4/H2 gas flow ratio equal to 5/1 (sccm) are investigated by transmission electron microscopy. It is found that the thin film is totally amorphous when grown on a glass substrate. But when the substrate is changed to crystalline silicon, some crystalline grains are found embedded in the amorphous structure in certain regions even if the thickness of the film reaches 600 nm. It is suggested that the amorphous silicon film grown on a crystalline silicon substrate at a temperature of 250°C without heavy H2 dilution is a mixed network of a small amount of crystalline silicon and the major portion of amorphous silicon.  相似文献   

17.
We have studied the epitaxial-like growth of germanium (Ge), due to solid phase crystallization (SPC) from amorphous Ge (a-Ge) deposited on single crystal silicon (Si) substrate. The crystalline growth of Ge following the orientation of Si substrates was successfully obtained by the SPC at 400 °C or higher. The preferential growth on Si (111) substrates continues up to 10,000 Å. Different orientations from the substrate orientation in XRD patterns are slightly observed in the growth on Si (100) substrates at 450 °C, but the preferential growth of (100) orientation continued in the whole film thickness in TEM images. The epitaxial-like growth of Ge may be more preferable on the Si (111) substrate than the (100) one.  相似文献   

18.
A series of 100-oriented ScN films was grown under N-rich conditions on 100-oriented Si using different Sc fluxes. The ScN films grew in an epitaxial cube-on-cube orientation, with [0 0 1]ScN//[0 0 1]Si and [1 0 0]ScN//[1 0 0]Si, despite the high (11%) lattice mismatch between ScN and Si. The film grain size increases and the film ω-FWHM decreases with increasing Sc flux, but the film roughness increases. Films grown under similar conditions on 111-oriented Si resulted in mixed 111 and 100 orientations, indicating that the 100 orientation is favoured both due to texture inheritance from the substrate and due to the growth conditions used.  相似文献   

19.
Oxide/nitride/oxide films were deposited onto bare silicon substrates by low-pressure chemical vapor deposition (LPCVD) of silicon nitride and thermal oxidation. The X-ray reflectivity technique has been used to study the influence of the growth conditions and of different cleaning procedures of the silicon substrate on the structure and morphology of the deposited multilayers. The results revealed how, from an analysis of the X-ray reflectivity data performed by using Fresnel equations for multilayers modified to account for the interface imperfections, we determine, in a non-destructive manner, structural parameters such as density, thickness, roughness, and interface structure of the whole dielectric layers, giving us more information and greater sensitivity respect to cross-section transmission electron microscopy (TEM) and ellipsometric measurements.  相似文献   

20.
The effect of the N/Al ratio of AlN buffers on the optical and crystal quality of GaN films, grown by metalorganic chemical vapor deposition on Si(1 1 1) substrates, has been investigated. By optimizing the N/Al ratio during the AlN buffer, the threading dislocation density and the tensile stress have been decreased. High-resolution X-ray diffraction exhibited a (0 0 0 2) full-width at half-maximum as low as 396 acrsec. The variations of the tensile stress existing in the GaN films were approved by the redshifts of the donor bound exiton peaks in the low-temperature photoluminescence measurement at 77 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号