首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examine the emergence of objectivity for quantum many-body systems in a setting without an environment to decohere the system’s state, but where observers can only access small fragments of the whole system. We extend the result of Reidel (2017) to the case where the system is in a mixed state, measurements are performed through POVMs, and imprints of the outcomes are imperfect. We introduce a new condition on states and measurements to recover full classicality for any number of observers. We further show that evolutions of quantum many-body systems can be expected to yield states that satisfy this condition whenever the corresponding measurement outcomes are redundant.  相似文献   

2.
Quantum Darwinism (QD) is the process responsible for the proliferation of redundant information in the environment of a quantum system that is being decohered. This enables independent observers to access separate environmental fragments and reach consensus about the system’s state. In this work, we study the effect of disorder in the emergence of QD and find that a highly disordered environment is greatly beneficial for it. By introducing the notion of lack of redundancy to quantify objectivity, we show that it behaves analogously to the entanglement entropy (EE) of the environmental eigenstate taken as an initial state. This allows us to estimate the many-body mobility edge by means of our Darwinistic measure, implicating the existence of a critical degree of disorder beyond which the degree of objectivity rises the larger the environment is. The latter hints the key role that disorder may play when the environment is of a thermodynamic size. At last, we show that a highly disordered evolution may reduce the spoiling of redundancy in the presence of intra-environment interactions.  相似文献   

3.
Recently,a scheme for deterministic remote preparation of arbitrary multi-qubit equatorial states was proposed by Wei et al.[Quantum Inf.Process.1770(2018)].It is worth mentioning that the construction of mutual orthogonal measurement basis plays a key role in quantum remote state preparation.In this paper,a simple and feasible remote preparation of arbitrary n-qubit equatorial states scheme is proposed.In our scheme,the success probability will reach unit.Moreover,there are no coefficient constraint and auxiliary qubits in this scheme.It means that the success probabilities are independent of the coefficients of the entangled channel.The advantage of our scheme is that the mutual orthogonal measurement basis is devised.To accomplish the quantum remote state preparation(RSP)schemes,some new sets of mutually orthogonal measurement basis are introduced.  相似文献   

4.
A theory of the joint measurement of quantum mechanical observables is generalized in order to make it applicable to the measurement of the local observables of field theory. Subsequently, the property of local commutativity, which is usually introduced as a postulate, is derived by means of the theory of measurement from a requirement of mutual nondisturbance, which, for local observables performed at a spacelike distance from each other, is interpreted as a requirement of macrocausality. Alternative attempts at establishing a deductive relationship between relativistic causality and local commutativity are reviewed, but found wanting, either because of the assumption of an unwarranted objectivity of the object system (algebraic approach) or because of the use of a projection postulate (operational approach). Finally, the quantum mechanical nonobjectivity is related to certain features of nonlocality which are present in the formalism of quantum mechanics.  相似文献   

5.
Three recent arguments seek to show that the universal applicability of unitary quantum theory is inconsistent with the assumption that a well-conducted measurement always has a definite physical outcome. In this paper I restate and analyze these arguments. The import of the first two is diminished by their dependence on assumptions about the outcomes of counterfactual measurements. But the third argument establishes its intended conclusion. Even if every well-conducted quantum measurement we ever make will have a definite physical outcome, this argument should make us reconsider the objectivity of that outcome.  相似文献   

6.
Pekka Lahti is a prominent exponent of the renaissance of foundational studies in quantum mechanics that has taken place during the last few decades. Among other things, he and coworkers have drawn renewed attention to, and have analyzed with fresh mathematical rigor, the threat of inconsistency at the basis of quantum theory: ordinary measurement interactions, described within the mathematical formalism by Schrödinger-type equations of motion, seem to be unable to lead to the occurrence of definite measurement outcomes, whereas the same formalism is interpreted in terms of probabilities of precisely such definite outcomes. Of course, it is essential here to be explicit about how definite measurement results (or definite properties in general) should be represented in the formalism. To this end Lahti et al. have introduced their objectification requirement that says that a system can be taken to possess a definite property if it is certain (in the sense of probability 1) that this property will be found upon measurement. As they have gone on to demonstrate, this requirement entails that in general definite outcomes cannot arise in unitary measuring processes.In this paper we investigate whether it is possible to escape from this deadlock. As we shall argue, there is a way out in which the objectification requirement is fully maintained. The key idea is to adapt the notion of objectivity itself, by introducing relational or perspectival properties. It seems that such a “relational perspective” offers prospects of overcoming some of the long-standing problems in the interpretation of quantum mechanics.  相似文献   

7.

The usual no-cloning theorem implies that two quantum states are identical or orthogonal if we allow a cloning to be on the two quantum states. Here, we investigate a relation between the no-cloning theorem and the projective measurement theory that the results of measurements are either + 1 or − 1. We introduce the Kochen-Specker (KS) theorem with the projective measurement theory. We result in the fact that the two quantum states under consideration cannot be orthogonal if we avoid the KS contradiction. Thus the no-cloning theorem implies that the two quantum states under consideration are identical in that case. It turns out that the KS theorem with the projective measurement theory says a new version of the no-cloning theorem. Next, we investigate a relation between the no-cloning theorem and the measurement theory based on the truth values that the results of measurements are either + 1 or 0. We return to the usual no-cloning theorem that the two quantum states are identical or orthogonal in the case.

  相似文献   

8.
In this paper we present an optical analogy of quantum entanglement by means of classical images. As in previous works, the quantum state of two or more qbits is encoded by using the spatial modulation in amplitude and phase of an electromagnetic field. We show here that bidimensional encoding of two qbit states allows us to interpret some non local features of the joint measurement by the assumption of “astigmatic” observers with different resolving power in two orthogonal directions. As an application, we discuss the optical simulation of measuring a system characterized by multiparticle entanglement. The simulation is based on a local representation of entanglement and a classical interferometric system. In particular we show how to simulate the Greenberger-Horne Zeilinger (GHZ) argument and the experimental results which interpretation illustrates the conflict between quantum mechanics and local realism.  相似文献   

9.
汪克林  曹则贤 《物理》2014,43(06):381-387
量子测量原理是量子力学的重要组成部分。具体的测量实验是否构成量子测量,是有商榷的余地的。并不是所有可观测量的本征值都具有实在的意义。量子测量原理中论及的经典—量子世界分界处之扰动的作用,可改述为量子测量需要加入统计原理的考量,这其实正印证了“统计原则高于量子原则”的现实。类似双缝干涉和Stern—Gerlach实验这样的宏观实验同量子测量原理是相融洽的,可能反映的恰是量子测量原理建立的历史背景和心理基础。本文的目的在于引起对量子测量问题的关注,并深信对该问题严肃、深入的讨论是有意义的。  相似文献   

10.
Zhou  Kaihang  Shi  Lei  Luo  Bingbing  Xue  Yang  Huang  Chao  Ma  Zhiqiang  Wei  Jiahua 《International Journal of Theoretical Physics》2019,58(12):4079-4092

By exploiting three-qubit entangled states and appropriate measurement basis, we propose efficient protocols for deterministic controlled remote state preparation of arbitrary real-parameter multi-qubit states, in which the maximal slice states are used as quantum channel. The successful probability of our schemes can reach up to 100% by using multi-qubit mutually orthogonal measurement basis without the introduction of auxiliary particles. Based on the implementation schemes for preparing arbitrary two- and three-qubit states with real parameters, we have derived the controlled remote state preparation protocols for arbitrary real-parameter multi-qubit states.

  相似文献   

11.
The consensus regarding quantum measurements rests on two statements: (i) von Neumann’s standard quantum measurement theory leaves undetermined the basis in which observables are measured, and (ii) the environmental decoherence of the measuring device (the “meter”) unambiguously determines the measuring (“pointer”) basis. The latter statement means that the environment monitors (measures) selected observables of the meter and (indirectly) of the system. Equivalently, a measured quantum state must end up in one of the “pointer states” that persist in the presence of the environment. We find that, unless we restrict ourselves to projective measurements, decoherence does not necessarily determine the pointer basis of the meter. Namely, generalized measurements commonly allow the observer to choose from a multitude of alternative pointer bases that provide the same information on the observables, regardless of decoherence. By contrast, the measured observable does not depend on the pointer basis, whether in the presence or in the absence of decoherence. These results grant further support to our notion of Quantum Lamarckism, whereby the observer’s choices play an indispensable role in quantum mechanics.  相似文献   

12.
The central problem in the quantum theory of measurement, how to describe the process of state reduction in terms of the quantum mechanical formalism, is solved on the basis of the relativity of quantal states, which implies that once the apparatus is detected in a well-defined state, the object state must reduce to a corresponding one. This is a process termed by Schrödinger disentanglement. Here, it is essential to observe that Renninger's negative result does constitute an actual measurement process. From this point of view, Heisenberg's interpretation of his microscope experiment and the Einstein-Podolsky-Rosen arguments are reinvestigated. Satisfactory discussions are given to various experimental situations, such as the Stern-Gerlach-type experiment, successive measurements, macroscopic measurements, and Schrödinger's cat. Finally it is proposed to regard a state vector in quantum mechanics as an irreducible physical construct, in Margenau's sense, that is not further analyzable both mathematically and conceptually.  相似文献   

13.
We present a simple first step toward a relativistically covariant generalization of the Bohm-Bub hidden-variable theory. The model is applicable to spin measurement on a single Dirac particle and describes the collapse of the state vector to a spin-up or spin-down state. The essential postulate is that the hidden-variable vector transforms in the same way as the state vector under a Lorentz transformation. This yields a covariant collapse equation, which reduces to the ordinary Bohm-Bub equation for an observer stationary with respect to the particle and shows a time dilated collapse for a moving observer. The model yields the correct quantum transition probabilities for all observers.Deceased.  相似文献   

14.
Bell's theorem depends crucially on counterfactual reasoning, and is mistakenly interpreted as ruling out a local explanation for the correlations which can be observed between the results of measurements performed on spatially-separated quantum systems. But in fact the Everett interpretation of quantum mechanics, in the Heisenberg picture, provides an alternative local explanation for such correlations. Measurement-type interactions lead, not to many worlds but, rather, to many local copies of experimental systems and the observers who measure their properties. Transformations of the Heisenberg-picture operators corresponding to the properties of these systems and observers, induced by measurement interactions, label each copy and provide the mechanism which, e. g., ensures that each copy of one of the observers in an EPRB or GHZM experiment will only interact with the correct copy of the other observer(s). The conceptual problem of nonlocality is thus replaced with a conceptual problem of proliferating labels, as correlated systems and observers undergo measurement-type interactions with newly-encountered objects and instruments; it is suggested that this problem may be resolved by considering quantum field theory rather than the quantum mechanics of particles.  相似文献   

15.
We study the non-perfect propagation of information for evolving a low-dimensional environment that includes self-evolution as well as noisy initial states and analyse the interrelations between the degree of objectivization and environment parameters. In particular, we consider an analytical model of three interacting qubits and derive its objectivity parameters. The numerical analysis shows that the quality of the spectrum broadcast structure formed during the interaction may exhibit non-monotonicity both in the speed of self-dynamics of the environment as well as its mixedness. The former effect is particularly strong, showing that—considering part of the environment as a measurement apparatus—an increase of the external magnetic field acting on the environment may turn the vague measurement into close to ideal. The above effects suggest that quantum objectivity may appear after increasing the dynamics of the environment, although not with respect to the pointer basis, but some other, which we call the generalized pointer or indicator basis. Furthermore, it seems also that, when the objectivity is poor, it may be improved, at least by some amount, by increasing the thermal noise. We provide further evidence of this by analysing the upper bounds on distance to the set of states representing perfect objectivity in the case of a higher number of qubits.  相似文献   

16.
Even a very simple proof can show that the collapse of a wave function caused by a quantum measurement on one of two distant (correlated) subsystems cannot be used in any way for an instantaneous transfer of information between observers carrying out measurements on the subsystems.  相似文献   

17.
We present two schemes for perfect cloning unknown two-qubit and general two-qubit entangled states with assistance from two state preparers, respectively. In the schemes, the sender wish to teleport an unknown two-qubit (or general two-qubit) entangled state which from two state preparers to a remote receiver, and then create a perfect copy of the unknown state at her place. The schemes include two stages. The first stage of the schemes requires usual teleportation. In the second stage, to help the sender realize the quantum cloning, two state preparers perform two-qubit projective measurements on their own qubits which from the sender, then the sender can acquire a perfect copy of the unknown state. To complete the assisted cloning schemes, several novel sets of mutually orthogonal basis vectors are introduced. It is shown that, only if two state preparers collaborate with each other, and perform projective measurements under suitable measuring basis on their own qubit respectively, the sender can create a copy of the unknown state by means of some appropriate unitary operations. The advantage of the present schemes is that the total success probability for assisted cloning a perfect copy of the unknown state can reach 1.  相似文献   

18.
This paper discusses the approach to the analysis of measurements in quantum mechanics which is based on a set of "detection operators" forming a resolution of identity. The expectation value of each of these operators furnishes the counting rate at a detector for any object state that is prepared. "Predictable measurements" are those for which there is a representation in which only one element of each diagonal matrix representing each operator is not zero. A set of commuting detection operators defines the class of "spectral measurements", which may be either predictable or not. An even more general definition of measurement may be given by abandoning the requirement of commutativity of the detection operators. In this case one cannot define an observable which corresponds to a single self-adjoint operator, which violates the standard theory of quantum mechanical measurement. Simple experimental realizations of each of these classes of measurement are suggested.  相似文献   

19.
20.
Stapp claims that, when spatial degrees of freedom are taken into account, Everett quantum mechanics is ambiguous due to a “core basis problem.” To examine an aspect of this claim I generalize the ideal measurement model to include translational degrees of freedom for both the measured system and the measuring apparatus. Analysis of this generalized model using the Everett interpretation in the Heisenberg picture shows that it makes unambiguous predictions for the possible results of measurements and their respective probabilities. The presence of translational degrees of freedom for the measuring apparatus affects the probabilities of measurement outcomes in the same way that a mixed state for the measured system would. Examination of a measurement scenario involving several observers illustrates the consistency of the model with perceived spatial localization of the measuring apparatus.This work was sponsored by the Air Force under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the U.S. Government.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号