首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is a basically expository article, with some new observations, tracing connections of the quantum potential to Fisher information, to Kähler geometry of the projective Hilbert space of a quantum system, and to the Weyl-Ricci scalar curvature of a Riemannian flat spacetime with quantum matter.Á Denise  相似文献   

2.
We study three-dimensional Chern-Simons theory with complex gauge group SL(2,), which has many interesting connections with three-dimensional quantum gravity and geometry of hyperbolic 3-manifolds. We show that, in the presence of a single knotted Wilson loop in an infinite-dimensional representation of the gauge group, the classical and quantum properties of such theory are described by an algebraic curve called the A-polynomial of a knot. Using this approach, we find some new and rather surprising relations between the A-polynomial, the colored Jones polynomial, and other invariants of hyperbolic 3-manifolds. These relations generalize the volume conjecture and the Melvin-Morton-Rozansky conjecture, and suggest an intriguing connection between the SL(2,) partition function and the colored Jones polynomial.  相似文献   

3.
We discuss some ways in which topos theory (a branch of category theory) can be applied to interpretative problems in quantum theory and quantum gravity. In Sec.1, we introduce these problems. In Sec.2, we introduce topos theory, especially the idea of a topos of presheaves. In Sec.3, we discuss several possible applications of topos theory to the problems in Sec.1. In Sec.4, we draw some conclusions.  相似文献   

4.
WU Ning 《理论物理通讯》2002,38(2):151-156
The quantum gravity is formulated based on the principle of local gauge invariance. The model discussed in this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton's theory of gravity. In the first-order approximation and for vacuum, it gives out Einstein's general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantum theory.  相似文献   

5.
The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton‘s theory of gravity. In the first-order approximation and for vacuum,it gives out Einstein‘s general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantumtheory.  相似文献   

6.
As shown previously, quantum mechanics directly violates the weak equivalence principle in general, and thus indirectly violates the strong equivalence principle in all dimensions. The present paper shows that quantum mechanics also directly violates the strong equivalence principle unless it is arbitrarily abetted in hindsight. Vital domains are shown to exist in which quantum gravity would be non-applicable. There are classical subtleties in which the strong equivalence principle appears to be violated, but is not. Neutron free fall interference experiments in a gravitational field are examined, as is Galileo's falling body assertion and the misconception it leads to.  相似文献   

7.
We describe a kinetic theory approach to quantum gravity by which we mean a theory of the microscopic structure of space-time, not a theory obtained by quantizing general relativity. A figurative conception of this program is like building a ladder with two knotty poles: quantum matter field on the right and space-time on the left. Each rung connecting the corresponding knots represents a distinct level of structure. The lowest rung is hydrodynamics and general relativity; the next rung is semiclassical gravity, with the expectation value of quantum fields acting as source in the semiclassical Einstein equation. We recall how ideas from the statistical mechanics of interacting quantum fields helped us identify the existence of noise in the matter field and its effect on metric fluctuations, leading to the establishment of the third rung: stochastic gravity, described by the Einstein–Langevin equation. Our pathway from stochastic to quantum gravity is via the correlation hierarchy of noise and induced metric fluctuations. Three essential tasks beckon: (1) deduce the correlations of metric fluctuations from correlation noise in the matter field; (2) reconstituting quantum coherence—this is the reverse of decoherence—from these correlation functions; and (3) use the Boltzmann–Langevin equations to identify distinct collective variables depicting recognizable metastable structures in the kinetic and hydrodynamic regimes of quantum matter fields and how they demand of their corresponding space-time counterparts. This will give us a hierarchy of generalized stochastic equations—call them the Boltzmann–Einstein hierarchy of quantum gravity—for each level of space-time structure, from the the macroscopic (general relativity) through the mesoscopic (stochastic gravity) to the microscopic (quantum gravity).  相似文献   

8.
In recent years an increasing number of papers have attempted to mimic or supplant quantum field theory in discussions of issues related to gravity by the tools and through the perspective of quantum information theory, often in the context of alternative quantum theories. In this article, we point out three common problems in such treatments. First, we show that the notion of interactions mediated by an information channel is not, in general, equivalent to the treatment of interactions by quantum field theory. When used to describe gravity, this notion may lead to inconsistencies with general relativity. Second, we point out that in general one cannot replace a quantum field by a classical stochastic field, or mock up the effects of quantum fluctuations by that of classical stochastic sources (noises), because in so doing important quantum features such as coherence and entanglement will be left out. Third, we explain how under specific conditions semi-classical and stochastic theories indeed can be formulated from their quantum origins and play a role at certain regimes of interest.  相似文献   

9.
In the new framework of gravitational quantum field theory (GQFT) with spin and scaling gauge invariance developed in Phys. Rev. D 93 (2016) 024012-1, we make a perturbative expansion for the full action in a background field which accounts for the early inflationary universe. We decompose the bicovariant vector fields of gravifield and spin gauge field with Lorentz and spin symmetries SO(1,3) and SP(1,3) in biframe spacetime into SO(3) representations for deriving the propagators of the basic quantum fields and extract their interaction terms. The leading order Feynman rules are presented. A tree-level 2 to 2 scattering amplitude of the Dirac fermions, through a gravifield and a spin gauge field, is calculated and compared to the Born approximation of the potential. It is shown that the Newton's gravitational law in the early universe is modified due to the background field. The spin dependence of the gravitational potential is demonstrated.  相似文献   

10.
In the new framework of gravitational quantum field theory(GQFT) with spin and scaling gauge invariance developed in Phys. Rev. D 93(2016) 024012-1, we make a perturbative expansion for the full action in a background field which accounts for the early inflationary universe. We decompose the bicovariant vector fields of gravifield and spin gauge field with Lorentz and spin symmetries SO(1,3) and SP(1,3) in biframe spacetime into SO(3) representations for deriving the propagators of the basic quantum fields and extract their interaction terms. The leading order Feynman rules are presented. A tree-level 2 to 2 scattering amplitude of the Dirac fermions, through a gravifield and a spin gauge field, is calculated and compared to the Born approximation of the potential. It is shown that the Newton's gravitational law in the early universe is modified due to the background field. The spin dependence of the gravitational potential is demonstrated.  相似文献   

11.
12.
We formulate the spin foam perturbation theory for three-dimensional Euclidean Quantum Gravity with a cosmological constant. We analyse the perturbative expansion of the partition function in the dilute-gas limit and we argue that the Baez conjecture stating that the number of possible distinct topological classes of perturbative configurations is finite for the set of all triangulations of a manifold is not true. However, the conjecture is true for a special class of triangulations which are based on subdivisions of certain 3-manifold cubulations. In this case we calculate the partition function and show that the dilute-gas correction vanishes for the simplest choice of the volume operator. By slightly modifying the dilute-gas limit, we obtain a nonvanishing correction which is related to the second order perturbative correction. By assuming that the dilute-gas limit coupling constant is a function of the cosmological constant, we obtain a value for the partition function which is independent of the choice of the volume operator. Member of the Mathematical Physics Group, University of Lisbon.  相似文献   

13.
We use the theory based on the gravitational gauge group G to obtain a spherical symmetric solution of the field equations for the gravitational potentials on a Minkowski space-time. The gauge group G is defined and then we introduce the gauge-covariant derivative Dμ. The strength tensor of the gravitational gauge field is also obtained and a gauge-invariant Lagrangian including the cosmological constant is constructed. A model whose gravitational gauge potentials A^α μ (x) have spherical symmetry, depending only on the radial coordinate τ is considered and an analytical solution of these equations, which induces the Schwarzschild-de-Sitter metric on the gauge group space, is then determined. All the calculations have been performed by GR Tensor II computer algebra package, running on the Maple V platform, along with several routines that we have written for our model.  相似文献   

14.
15.
We construct perturbative quantum gravity in a generally covariant way. In particular our construction is background independent. It is based on the locally covariant approach to quantum field theory and the renormalized Batalin–Vilkovisky formalism. We do not touch the problem of nonrenormalizability and interpret the theory as an effective theory at large length scales.  相似文献   

16.
17.
18.
19.
There are many theories of quantum gravity, depending on asymptotic boundary conditions, and the amount of supersymmetry. The cosmological constant is one of the fundamental parameters that characterizes different theories. If it is positive, supersymmetry must be broken. A heuristic calculation shows that a cosmological constant of the observed size predicts superpartners in the TeV range. This mechanism for SUSY breaking also puts important constraints on low energy particle physics models.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号