首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
In this report, we investigate the nanoparticle formation between random copolymers (RCPs) of methoxy-poly(ethylene glycol) monomethacrylate (MePEGMA) and (3-(methacryloylamino)propyl)trimethylammonium chloride (MAPTAC) and oppositely charged natural surfactants, sodium oleate and sodium laurate, using turbidimetric titration, steady-state fluorescence, dynamic light scattering, and electron microscopy. Though sodium oleate and sodium laurate are sparingly soluble in water, the nanoparticle complexes formed between the RCPs and these surfactants are soluble in the entire range of compositions studied here, including the stoichiometric electronetural complexes. The spherical nature of these nanoparticle complexes is revealed by electron microscopic (EM) analysis. Dynamic light scattering (DLS) showed that the average diameters of the nanoparticles are in the range 50 to 150 nm, which is supported by EM analysis. Pyrene fluorescence experiments suggested that these soluble nanoparticles have hydrophobic cores, which may solubilize hydrophobic drug molecules. The polarity index (I(1)/I(3)) obtained from the pyrene fluorescence spectra and the conductometric measurements showed that the critical concentration of fatty acid salts needed to obtain nanoparticles are in the order of 10(-4) M. Further, the complexation of such poorly water-soluble amphiphilic surfactants with polymers offers a useful method for the immobilization of hydrophobic compounds towards water-soluble drug carrier formulations. The formation of water-soluble nanoparticles by the self-assembly of fatty acid salts upon interacting with oppositely charged poly(ethylene glycol)-based polyions.  相似文献   

2.
3.
Complete biophysical characterization of complexes (polyplexes) of cationic polymers and DNA is needed to understand the mechanism underlying nonviral therapeutic gene transfer. In this article, we propose a new series of synthesized random cationic polymers (RCPs) from methoxy poly(ethylene glycol) monomethacrylate (MePEGMA) and (3-(methacryloylamino)propyl)trimethylammonium chloride with different mole ratios (32:68, 11:89, and 6:94) which could be used as a model system to address and answer the basic questions relating to the mechanism of the interaction of calf thymus DNA (CT-DNA) and cationic polymers. The solubility of the complexes of CT-DNA and RCP was followed by turbidity measurements. It has been observed that complexes of RCP with 68 mol % MePEGMA precipitate near the charge neutralization point, whereas complexes of the other two polymers are water-soluble and stable at all compositions. Dnase 1 digestion experiments show that DNA is inaccessible when it forms complexes with RCP. Ethidium bromide exclusion and gel electrophoretic mobility show that both polymers are capable of binding with CT-DNA. Atomic force microscopy images in conjunction with light scattering experiments showed that the complexes are spherical in nature and 75-100 nm in diameter. Circular dichroism spectroscopy studies indicated that the secondary structure of DNA in the complexes is not perturbed due to the presence of poly(ethylene glycol) segments in the polymer. Furthermore, we used a combination of spectroscopic and calorimetric techniques to determine complete thermodynamic profiles accompanying the helix-coil transition of CT-DNA in the complexes. UV and differential scanning calorimetry melting experiments revealed that DNA in the complexes is more stable than in the free state and the extent of stability depends on the polymer composition. Isothermal titration calorimetry experiments showed that the binding of these RCPs to CT-DNA is associated with small exothermic enthalpy changes. A complete thermodynamic profile showed that the RCP/DNA complex formation is entropically favorable. Much broader opportunities to vary the architecture of the polymers studied here make these systems promising in addressing various basic and practical problems in gene delivery systems.  相似文献   

4.
An out line and summary of literature studies on interactions between different types of amphiphilic copolymer micelles with surfactants has been given. This field of research is still emerging and it is difficult presently to make generalisations on the effects of surfactants on the copolymer association. The effects are found to be varied depending upon the nature and type of hydrophobic (hp) core and molecular architecture of the copolymers and the hydrocarbon chain length and head group of surfactants. The information available on limited studies shows that both anionic and cationic surfactants (in micellar or molecular form) equally interact strongly with the associated and unassociated forms of copolymers. The beginning of the interaction is typically displayed as critical aggregation concentration (CAC), which lies always below the critical micelle concentration of the respective surfactant. The surfactants first bind to the hydrophobic core of the copolymer micelles followed by their interaction with the hydrophilic (hl) corona parts. The extent of binding highly depends upon the nature, hydropobicity of the copolymer molecules, length of the hydrocarbon tail and nature of the head group of the surfactant. The micellization of poly(ethylene oxide) (PEO)–poly(propylene oxide) (PPO)–poly(ethylene oxide) was found to be suppressed by the added surfactants and at higher surfactant concentrations, the block copolymer micelles get completely demicellized. This effect was manifested itself in the melting of liquid crystalline phases in the high copolymer concentrations. However, no such destabilization was found for the micelles of polystyrene (PS)–poly(ethylene oxide) copolymers in water. On the contrary, the presence of micellar bound surfactant associates resulted in to large super micellar aggregates through induced intra micellar interactions. But with the change in the hydrophobic part from polystyrene to poly(butadiene) (PB) in the copolymer, the added surfactants not only reduced the micellar size but also transformed cylindrical micelles to spherical ones. The mixtures in general exhibited synergistic effects. So varied association responses were noted in the mixed solutions of surfactants and copolymers.  相似文献   

5.
Three series of block copolymers of acrylamide (AM) and styrene (St) as hydrophobic comonomer with varied microstructures were prepared in microemulsion medium by changing feed ratio of monomers, ratio of St to surfactant, and amount of initiator, respectively. The effects of microstructure factors of the amphiphilic block copolymers PAM-b-PSt on their aqueous solution properties were investigated by fluorescence probe technique and surface tension measurement in detail. The experimental results show that the aqueous solution properties of PAM-b-PSt are strongly dependent on their microstructure factors, such as the length and content of PSt hydrophobic blocks in the copolymers and their molecular weight. It was found that the main microstructure factors which effect the hydrophobic association behavior of the copolymer PAM-b-PSt are the length and content of PSt hydrophobic blocks in the copolymer, whereas the hydrophobic association behavior of the copolymer is not affected nearly so much by molecular weight in more dilute regions. At the same time, it was also found that the main microstructure factors which affect the surface activity of the copolymer are the content of PSt hydrophobic blocks in the copolymer and molecular weight, whereas the length of PSt blocks in copolymer does not affect surface activity of the copolymer nearly so much under fixed content of PSt hydrophobic blocks and molecular weight in the copolymer.  相似文献   

6.
The interaction between cationic surfactants and isopropylacrylamide-acrylic acid-ethyl methacrylate (IPA:AA:EMA) terpolymers has been investigated using steady-state fluorescence and spectrophotometric measurements to assess the effect of the polymer composition on the aggregation process and terpolymers’ thermosensitivities. Micropolarity studies using pyrene show that the interaction of cationic surfactants with IPA:AA:EMA terpolymers occurs at surfactant concentrations much smaller than that observed for the pure surfactant in aqueous solution. The critical aggregation concentration (CAC) values decrease with both the hydrocarbon length of the surfactant and the content of ethyl methacrylate. These results were interpreted as a manifestation of the increasing contribution of attractive hydrophobic and electrostatic forces between negatively charged polymer chains and positively charged surfactant molecules. The increase of ethyl methacrylate in the copolymers lowers the CAC due to the larger hydrophobic character of the polymer backbone. The cloud point determination reveals that the lower critical solution temperatures (LCST) depend strongly on the copolymer composition and surfactant nature. The binding of surfactants molecules to the polymer chain screens the electrostatic repulsion between the carboxylic groups inducing a conformational transition and the dehydration of the polymer chain.  相似文献   

7.
The binding of two model surfactants, sodium dodecyl sulfate and dodecyltrimethylammonium bromide to β-lactoglobulin was studied at room temperature and the thermal stability of the resulting complexes was evaluated by differential scanning calorimetry (DSC) measurements. Binding isotherms indicated both ionic and hydrophobic interactions depending on both the charge of the protein and surfactant at different pHs and on the binding molar ratios of surfactant to the globular protein. Zeta potential measurements indicated charge neutralisation of the protein, under suitable conditions, which also lead to aggregation and precipitation of the proteins. Surface tension measurements indicated similarity between the two types of oppositely charged protein-surfactant complexes and a difference between them when protein and surfactants are similarly charged. DSC measurements revealed different behavior in protein conformation in the presence of the two surfactants. The results obtained at room temperature and upon heating are discussed in terms of the nature of the surfactant/protein interactions involved in the complex formation.  相似文献   

8.
Mixtures of oppositely charged surfactants and polyelectrolytes self-assemble into a variety of nanostructured complexes. With the view of developing simpler and cleaner alternatives to synthetic nanomaterials, self-assembled nanostructures can be prepared from bioderived surfactant/polyelectrolyte mixtures. These complexes can be designed to vary their phase behavior and structure in response to external stimuli, and are simpler and cleaner to prepare than conventional synthetic copolymers (e.g., block or graft). Yet, some potential applications of surfactant/polyelectrolyte complexes are limited by their lower stability. Here, we overcome this limitation by covalently coupling the surfactant head group to the polymer chain. Visual observations and small-angle X-ray scattering (SAXS) reveal that covalent coupling dramatically improves stability at both the macroscopic and mesoscopic lengthscales. This suggests that, through covalent conjugation, stability of nanostructured surfactant/biopolymer complexes can be made to rival that of synthetic copolymers, thereby extending their use to applications that require long-lasting nanostructured materials.  相似文献   

9.
In this paper we have evaluated a novel family of polymer-surfactant complexes formed between block ionomers and oppositely charged surfactants. Complexes between cationic copolymer poly(ethylene oxide)-g-polyethyleneimine (PEO-g-PEI) and sodium salt of oleic acid, natural nontoxic surfactant, are prepared and characterized. These systems self-assemble in aqueous solutions into particles with average size of 50–60 nm, which can solubilize hydrophobic dyes (Yellow OB) and drug molecules (paclitaxel). The use of the biologically active surfactants as components of block ionomer complexes is demonstrated for the complexes from PEO-g-PEI and all-trans-retinoic acid. Binding of relatively soluble drugs with block ionomers is illustrated using PEO-b-poly(sodium methacrylate) and doxorubicin. Overall these studies suggest that block ionomer complexes can be used to prepare a variety of soluble and stable formulations of biologically active compounds, and have potential application as drug delivery systems  相似文献   

10.
水溶性聚电解质—表面活性剂复合物的聚集行为   总被引:4,自引:1,他引:4  
聚电解质在溶液中与相反电荷的表面活性剂通过解电作用与疏水作用可形成聚电解质-表面活性剂复合物,依据反应条件生成的复事物可以是水溶性也可以是非水溶性的。水溶性的聚电解质-表面活性剂复合物由于有许多工业应用,因此近几十上来水溶性聚电解质-表面活性剂复合物的形成和结构已爱到人们的广泛重视。本文对水溶性聚电解质-表面活性剂复合物的聚集过程、聚集结构作了简要概述,此外对荧光光谱在这一领域的应用进行了重点介绍  相似文献   

11.
Mixing of polyelectrolyte solutions with solutions of oppositely charged surfactants usually leads to phase separation in a certain concentration range. However, since the charge-neutralized polyelectrolyte/surfactant nanoparticles might be utilized as versatile nanocarriers of different substances, it would be desirable to prevent their aggregation for some applications. As it was revealed in earlier investigations, the complete suppression of precipitation may be achieved only in mixtures of ionic surfactants and appropriate copolymer polyelectrolytes with nonionic and ionic blocks. In this work, we present a method that could prevent phase separation in mixtures of homopolyelectrolytes and oppositely charged surfactants. Specifically, it is shown that nonaggregating electroneutral nanocomplexes of branched poly(ethylenimine) (PEI) and sodium dodecyl sulfate (SDS) can be prepared in the presence of the amphiphilic triblock copolymer Pluronic F108, provided that an adequate mixing protocol is used for preparation of the PEI/SDS/F108 mixtures.  相似文献   

12.
We investigated the phase behavior and the microscopic structure of the colloidal complexes constituted from neutral/polyelectrolyte diblock copolymers and oppositely charged surfactant by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The neutral block is poly(N-isopropylacrylamide) (PNIPAM), and the polyelectrolyte block is negatively charged poly(acrylic acid) (PAA). In aqueous solution with neutral pH, PAA behaves as a weak polyelectrolyte, whereas PNIPAM is neutral and in good-solvent condition at ambient temperature, but in poor-solvent condition above approximately 32 degrees C. This block copolymer, PNIPAM-b-PAA with a narrow polydispersity, is studied in aqueous solution with an anionic surfactant, dodecyltrimethylammonium bromide (DTAB). For a low surfactant-to-polymer charge ratio Z lower than the critical value ZC, the colloidal complexes are single DTAB micelles dressed by a few PNIPAM-b-PAA. Above ZC, the colloidal complexes form a core-shell microstructure. The core of the complex consists of densely packed DTA+ micelles, most likely connected between them by PAA blocks. The intermicellar distance of the DTA+ micelles is approximately 39 A, which is independent of the charge ratio Z as well as the temperature. The corona of the complex is constituted from the thermosensitive PNIPAM. At lower temperature the macroscopic phase separation is hindered by the swollen PNIPAM chains. Above the critical temperature TC, the PNIPAM corona collapses leading to hydrophobic aggregates of the colloidal complexes.  相似文献   

13.
Block ionomer complexes (BIC) of "dual hydrophilic" block copolymers containing ionic and nonionic blocks and oppositely charged surfactants spontaneously form colloidal particles of ca. 80 nm in diameter stable in aqueous dispersions at every composition of the mixture. Packing and dynamics of aliphatic groups of the surfactant in BIC were examined by using the quenching-resolved fluorescence anisotropy (QRFA) method with 1,6-diphenyl-1,3,5-hexatriene (DPH) as a probe. The values of the order parameter and rotational relaxation time in the BIC were higher than those in the surfactant micelles. Incorporation of aliphatic alcohols in the BIC decreased the order parameter and increased the rotational relaxation time. The effects on the order parameter were explained by changes in the surfactant aliphatic group conformation to "fill the gaps" induced by insertion of shorter alcohol molecules. The effects on the relaxation time were attributed to a decrease in repulsion of the surfactant headgroups and expulsion of water from the BIC hydrophobic interior as evidenced by the decrease in micropolarity. The results of this study have implications for potential use of the BIC in pharmaceutics and other fields.  相似文献   

14.
A simple and elegant method based on steady-state fluorescence spectral measurement is demonstrated to study the interaction mechanism of copolymers and ionic surfactants with a suitable selection of fluorescent probe and also its general applicability in studying other systems. Three different concentration regions have been indicated from the changes in full width at half-maximum of the emission spectra and fluorescence intensity of coumarin 153 with the molar ratio of ionic surfactant to triblock copolymer (n). At low n values, copolymer-surfactant complexes are basically copolymer-rich micelles with few surfactant molecules, and at very high n values, copolymer-rich micelles are destroyed and surfactant-rich micelles with free copolymer monomers are formed. It has been observed that, in the intermediate surfactant concentration region, the transformation of a dominantly copolymer-rich complex to a mainly surfactant-rich complex can be either gradual incorporation of surfactants into the copolymer-rich micelles with freeing of copolymer units until surfactant-rich micelles are formed (type I) or simultaneous buildup of surfactant-rich micelles together with the destruction of copolymer-rich micelles (type II). The interaction mechanism for nonionic copolymers (P123 and F127) with ionic surfactants (SDS and CTAC) is mainly type II, but at higher copolymer concentrations interaction via the type I mechanism also operates. However, it is dominantly the type I mechanism that operates for common nonionic (TX100) and ionic surfactants.  相似文献   

15.
The effect of phase transitions in the solutions of the complexes of surfactants and oppositely charged polyelectrolytes of different chemical natures on the molecular mobility of the surfactant ions inside the intracomplex micelles was studied by the spin probe method. It was found that, irrespective of the fact whether the solutions of the polyelectrolyte–surfactant complexes are true solutions, colloidal dispersions, or thixotropic gels, the molecular mobility of the surfactant ions inside the complex micelles and, consequently, the local structure of the intracomplex micelles, remain unchanged upon both a change in the complex composition and transition of complexes from solution to the precipitate.  相似文献   

16.
With the use of polarized luminescence, relaxation times characterizing the intramolecular mobility of luminescent labeled copolymers of 2-deoxy-2-methacrylamido-D-glucose and unsaturated acids in solutions are determined in both nonionized and ionized states. Elements of the secondary structure typical for poly(methacrylic acid) are formed in copolymers with a high content of methacrylic acid (≥50 mol %) in their nonionized state. This structure is destroyed during ionization. Equilibrium stability constants for complexes of the copolymers with cationic surfactants are determined. Quantitative characteristics of the effects of the surfactant and copolymer structures and the ionic strength of solution on complex formation are estimated.  相似文献   

17.
The interactions in water between short amphiphilic macromomolecules, known as amphipols, and three neutral surfactants (detergents), dodecylmaltoside (DM), n-octylthioglucoside (OTG), and n-octyltetraethyleneoxide (C8E4), have been assessed by static and dynamic light-scattering (SLS and DLS), capillary electrophoresis (CE), and isothermal titration calorimetry (ITC). The amphipols selected are random copolymers of the hydrophobic n-octylacrylamide (25-30 mol %), a charged hydrophilic monomer, either acrylic acid ( approximately 35 mol %) or a phosphorylcholine-modified acrylamide (40-70 mol %), and, optionally, N-isopropylacrylamide (30-40 mol %). In water, the copolymers form micelles of small size (hydrodynamic radius: approximately 5 nm). Neutral surfactants, below their critical micellar concentration (cmc), form mixed micelles with the amphipols irrespective of the chemical structure of the detergent or the polymer. The fraction of detergent in the surfactant/polymer complexes increases significantly (cooperatively) as the surfactant concentration nears the cmc. The ITC data, together with data gathered by CE, were fitted via a regular mixing model, which allowed us to predict the detergent concentration in equilibrium with complexes and the heat evolved upon transfer of detergent from water into a mixed surfactant/polymer complex. The enthalpy of transfer was found to be almost equal to the enthalpy of micellization, and the regular mixing model points to a near-ideal mixing behavior for all systems. Amphipols are promising tools in biochemistry where they are used, together with neutral surfactants, for the stabilization and handling of proteins. This study provides guidelines for the optimization of current protein purification protocols and for the formulations of surfactant/polymer systems used in pharmaceutics, cosmetics, and foodstuffs.  相似文献   

18.
Amphiphilic block copolymers of the type poly(ethylenepropylene)-co-poly(ethyleneoxide) dramatically enhance the solubilisation efficiency of non-ionic surfactants in microemulsions that contain equal volumes of water in oil. Consequently, the length scale of the microstructure of such bicontinuous microemulsions is dramatically increased up to the order of a few 100 nm. In this paper, we show that this so-called efficiency boosting effect can also be applied to water-in-oil microemulsions with droplet microstructure. Such giant water-in-oil microemulsions would provide confined compartments in which chemical reactions of biological macromolecules can be performed on a single molecule level. With this motivation we investigated the phase behavior and the microstructure of oil-rich microemulsions containing D(2)O, n-decane(d22), C(10)E(4) and the amphiphilic block copolymer PEP5-PEO5 [poly(ethylenepropylene)-co-poly(ethyleneoxide), weight per block of 5000 g/ mol]. We found that 15 wt % of water can be solubilised by 5 wt % of surfactant and block copolymer when about 6 wt % of surfactant is replaced by the block copolymer. Small-angle-neutron-scattering experiments were performed to determine the length scales and microstructure topologies of the oil-rich microemulsions. To analyze the scattering data, we derived a novel form factor that also takes into account the scattering contribution of the hydrophobic part of the block copolymer molecules that reside in the surfactant shell. The quantitative analysis of the scattering data with this form factor shows that the radius of the largest droplets amounts up to 30 nm. The novel form factor also yielded qualitative information on the stretching of the polymer chains in dependence on the polymer surface density and the droplet radius.  相似文献   

19.
Water-soluble complexes between sodium poly(isoprene-b-methacrylate) (NaIMA) amphiphilic block copolymer micelles and two cationic surfactants with different hydrophobic tail lengths, namely, dodecyltrimethylammonium bromide (DTMAB) and octyltrimethylammonium bromide (OTMAB), were prepared by mixing individual aqueous solutions of block copolymers and surfactants. The complexes were characterized in terms of size, overall charge, and micropolarity by dynamic light scattering, zeta-potential measurements, and fluorescence spectroscopy. Properties of the systems were investigated as a function of surfactant concentration and surfactant type and state in the initial solutions, as well as temperature. Experiments reveal surfactant complexation at the coronal sodium poly(methacrylate) (NaMA) chains, followed by an increase in mass and a decrease in size of the micelles. Complexation of individual surfactant micelles was observed when the DTMAB concentration in the starting solutions was higher than the surfactant cmc. The complexes show a temperature dependence of their dimension due to the hydrophobic effect.  相似文献   

20.
A series of poly(?‐caprolactone/glycolide)‐poly(ethylene glycol) (P(CL/GA)‐PEG) diblock copolymers were prepared by ring opening polymerization of a mixture of ?‐caprolactone and glycolide using mPEG as macro‐initiator and stannous octoate as catalyst. Self‐assembled micelles were prepared from the copolymers using nanoprecipitation method. The micelles were spherical in shape. The micelle size was larger for copolymers with longer PEG blocks. In contrast, the critical micelle concentration of copolymers increased with decreasing the overall hydrophobic block length. Drug loading and drug release studies were performed under in vitro conditions, using paclitaxel as a hydrophobic model drug. Higher drug loading was obtained for micelles with longer poly(ε‐caprolactone) blocks. Faster drug release was obtained for micelles of mPEG2000 initiated copolymers than those of mPEG5000 initiated ones. Higher GA content in the copolymers led to faster drug release. Moreover, drug release rate was enhanced in the presence of lipase from Pseudomonas sp., indicating that drug release is facilitated by copolymer degradation. The biocompatibility of copolymers was evaluated from hemolysis, dynamic clotting time, and plasma recalcification time tests, as well as MTT assay and agar diffusion test. Data showed that copolymer micelles present outstanding hemocompatibility and cytocompatibility, thus suggesting that P(CL/GA)‐PEG micelles are promising for prolonged release of hydrophobic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号