首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper discusses scaling of mixing during miscible flow in heterogeneous porous media. In large field systems dispersivity appears to depend on system length due to heterogeneities. Three types of scaling are discussed to investigate the heterogeneous effects. Dimensional analysis of mixing during flow through geometerically scaled heterogeneous models is illustrated using measured dispersion. Fractal analysis of mixing in statistically scaled heterogeneous porous media is discussed. Analog scaling of pressure transients in heterogeneous porous media is suggested as an in-situ method of estimating dispersion.Notation L Length - M mass - t time, (1) indicates dimensionless - a dispersivity (L) - V local velocity (L/t) - c concentration (l). - v velocity (L/t) - C1 fluid compressibility (Lt2/M) - v time averaged velocity (LJt) - D dispersion VA) - W width (L) - D fractional dimension (1) - x coordinate (L) - d Euclidean dimension (1) - Y Y=In \-k (l) - \-d average particle size (L) - y coordinate (L) - g acceleration due to gravity (L/t2) - c fractal cutoff (L) - \-k average permeability (L2) - viscosity (LM/t) - L length (L) - porosity (1) - L correlation scale (1/L) - density (N/L3) - N Number of sites (l) - 2 variance (dimension depends on variable) - p pressure (W/t2L) - spectral exponent (l) - [R] randomnumber (1) - r radius (L) - t time (t)  相似文献   

2.
Single-phase permeability k has intensively been investigated over the past several decades by means of experiments, theories and simulations. Although the effect of surface roughness on fluid flow and permeability in single pores and fractures as well as networks of fractures was studied previously, its influence on permeability in a random mass fractal porous medium constructed of pores of different sizes remained as an open question. In this study, we, therefore, address the effect of pore–solid interface roughness on single-phase flow in random fractal porous media. For this purpose, we apply a mass fractal model to construct porous media with a priori known mass fractal dimensions \(2.579 \le D_{\mathrm{m}} \le 2.893\) characterizing both solid matrix and pore space. The pore–solid interface of the media is accordingly roughened using the Weierstrass–Mandelbrot approach and two parameters, i.e., surface fractal dimension \(D_{\mathrm{s}}\) and root-mean-square (rms) roughness height. A single-relaxation-time lattice Boltzmann method is applied to simulate single-phase permeability in the corresponding porous media. Results indicate that permeability decreases sharply with increasing \(D_{\mathrm{s}}\) from 1 to 1.1 regardless of \(D_{\mathrm{m}}\) value, while k may slightly increase or decrease, depending on \(D_{\mathrm{m}}\), as \(D_{\mathrm{s}}\) increases from 1.1 to 1.6.  相似文献   

3.
Many subsurface solute transport studies employ numerical modeling techniques to estimate solute arrival times. Simplifying assumptions must be made to define the modeling domain within a mathematical framework. One common assumption is that the vertical flow is negligible such that the flow field can be simulated with a two-dimensional model. Reducing the vertical dimension reduces the number of flow paths that a solute can take. In a heterogenous medium, artificially removing the 3rd dimension may lead to erroneous results. We investigate the error in the simulated solute breakthrough associated with a two-dimensional model. We also use a stochastic solution of solute arrival time to derive a transform of a two-dimensional ln (k) field so that solute transport more closely resembles three-dimensional transport behavior. The moment equations for two- and three-dimensional domains were solved simultaneously to calculate this transform. The results indicate that the removal of the vertical variability (3D 2D) introduces a 5–10% error in the predicted solute breakthrough. The error tends to increase with increased hydraulic conductivity variance. Numerical experiments confirm that the transform developed herein decreases the relative error of particle breakthrough curves.  相似文献   

4.
This paper presents a study on the deformation of anisotropic fibrous porous media subjected to moistening by water in the liquid phase. The deformation of the medium is studied by applying the concept of effective stress. Given the structure of the medium, the displacement of the solid matrix is not taken into account with respect to the displacement of the liquid phase. The transport equations are derived from the model proposed by Narasimhan. The transport coefficients and the relation between the variation in apparent density and effective stress are obtained by test measurements. A numerical model has been established and applied for studying drip moistening of mineral wool samples capable or incapable of deformation.Nomenclature D mass diffusion coefficient [L2t–1] - e void fraction - g gravity acceleration [Lt–2] - J mass transfer density [ML–2t–1] - K hydraulic conductivity [Lt–1] - K s hydraulic conductivity of the solid phase [Lt–1] - K * hydraulic conductivity of the deformable porous medium [Lt–1] - P pressure of moistening liquid [ML–1 t–2] - S degree of saturation - t time [t] - V speed [Lt–1] - X horizontal coordinate [L] - Z vertical coordinate measured from the bottom of porous medium [L] - z z-coordinate [L] Greek Letters porosity - 1 total hydric potential [L] - g gas density [ML–3] - 1 liquid density [ML–3] - 0 apparent density [ML–3] - s density of the solid phase [ML–3] - density of the moist porous medium [ML–3] - external load [ML–1t–2] - effective stress [ML–1t–2] - bishop's parameter - matrix potential or capillary suction [L] Indices g gas - 1 moistening liquid - p direction perpendicular to fiber planes - s solid matrix - t direction parallel to fiber planes - v pore Exponent * movement of solid particles taken into account  相似文献   

5.
Two models for combined gas-phase diffusion and advection in porous media, the advective-diffusive model (ADM) and the dusty-gas model (DGM), are commonly used. The ADM is based on a simple linear addition of advection calculated by Darcy's law and ordinary diffusion using Fick's law with a porosity–tortuosity–gas saturation multiplier to account for the porous medium. The DGM applies the kinetic theory of gases to the gaseous components and the porous media (or dust) to develop an approach for combined transport due to diffusion and advection that includes porous medium effect. The ADM and Fick's law are considered to be generally inferior for gas diffusion in porous media, and the more mechanistic DGM is preferred. Under trace gas diffusion conditions, Fick's law overpredicts the gas diffusion flux compared to the DGM. The difference between the two models increases as the permeability decreases. In addition, the difference decreases as the pressure increases. At atmospheric pressure, the differences are minor (<10%) for permeabilities down to about 10–13 m2. However, for lower permeabilities, the differences are significant and can approach two orders of magnitude at a permeability of 10–18 m2. In contrast, at a pressure of 100 atm, the maximum difference for a permeability of 10–18 m2 is only about a factor of 2. A molecule–wall tortuosity coefficient based on the DGM is proposed for trace gas diffusion using Fick's law. Comparison of the Knudsen diffusion fluxes has also been conducted. For trace gases heavier than the bulk gas, the ADM mass flux is higher than the DGM. Conversely, for trace gases lighter than the bulk gas, the ADM mass flux is lower than the DGM. Similar to the ordinary diffusion variation, the differences increase as the permeability decreases, and get smaller as the pressure increases. At atmospheric pressure, the differences are small for higher permeabilities (>10–13 m2) but may increase to about 2.7 for He at lower permeabilities of about 10–18 m2. A modified Klinkenberg factor is suggested to account for differences in the models.  相似文献   

6.
In earlier work [1, 2] mathematical models have been constructed for processes of displacement of oil from a porous medium by a solution of an active additive, i.e., an additive capable of changing the hydro-dynamic characteristics of the fluid and the medium. An additive of this kind that was considered was a polymer that in the dissolved state influences the properties of the displacing fluid and in the adsorbed state the permeability of the porous medium. Self-similar solutions were obtained corresponding to the problem of frontal displacement from a homogeneous porous medium, and a number of numerical calculations were made. It is natural to generalize this treatment by introducing into the problem a second active factor, which is here taken to be the temperature of the injected fluid. The analysis of the nonisothermal displacement of oil by a solution of an active additive can be transferred without significant modifications to the general problem of displacement of oil by a solution carrying two active agents. The names additive and temperature are retained here only for convenience of exposition.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 90–107, November–December, 1980.We thank A. A. Barmin, A. G. Kulikovskii, and L. A. Chudov for helpful discussions.  相似文献   

7.
We show that for a fractal soil the soil-water conductivity, K, is given by $$\frac{K}{{K_\varepsilon }} = (\Theta /\varepsilon )^{2D/3 + 2/(3 - D)}$$ where $K_\varepsilon$ is the saturated conductivity, θ the water content, ? its saturated value and D is the fractal dimension obtained from reinterpreting Millington and Quirk's equation for practical values of the porosity ?, as $$D = 2 + 3\frac{{\varepsilon ^{4/3} + (1 - \varepsilon )^{2/3} - 1}}{{2\varepsilon ^{4/3} \ln ,{\text{ }}\varepsilon ^{ - 1} + (1 - \varepsilon )^{2/3} \ln (1 - \varepsilon )^{ - 1} }}$$ .  相似文献   

8.
We present a computationally fast Invasion Percolation (IP) algorithm. IP is a numerical approach for generating realistic fluid distributions for quasi-static (i.e., slow) immiscible fluid invasion in porous media. The algorithm proposed here uses a binary-tree data structure to identify the site (pore) connected to the invasion cluster that is the next to be invaded. Gravity is included. Trapping is not explicitly treated in the numerical examples but can be added, for example, using a Hoshen–Kopelman algorithm. Computation time to percolation for a 3D system having $N$ total sites and $M$ invaded sites at percolation goes as $O(M \log M)$ for the proposed binary-tree algorithm and as $O(M N)$ for a standard implementation of IP that searches through all of the uninvaded sites at each step. The relation between $M$ and $N$ is $M = N^{D/E}$ , where $D$ is the fractal dimension of an infinite cluster and $E$ is Euclidean space dimension. In numerical practice, on finite-sized cubic lattices with invasion structures influenced by the injection boundary and boundary conditions lateral to the flow direction, we observe the scaling $M = N^{0.852}$ in 3D (valid through the second decimal place) instead of $M= N^{0.843}$ based on the infinite cluster fractal dimension $D=2.53$ .  相似文献   

9.
Unsteady two-phase flow through a microinhomogeneous porous medium is considered. A forest growth model — a percolation model that enables nonequilibrium effects to be taken into account — is proposed for describing the dynamics of the process. In the context of the plane problem expressions are obtained for determining the saturation and the characteristic dimensions of the stagnation zones of trapped phase behind the displacement front.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.6, pp. 73–80, November–December, 1993.  相似文献   

10.
The stability of a rotating dust cylinder against perturbations located in the plane perpendicular to the axis of rotation is investigated. It is shown that a homogeneous rotating cylinder containing a weak inhomogeneity is stable against such perturbations. A weakly inhomogeneous cylinder with opposite streams of equal density is unstable for thel=2 mode in the case of a perturbation of the formei(l–t), when the density increases radially. The instability of a system consisting of a homogeneous rotating dust cylinder in a hot homogeneous medium is determined. It is shown that the maximum growth rate corresponds tol = 2 when the density of a cold cylinder is not negligible in comparison with the density of the medium. In the opposite case, the maximum growth rate shifts toward l=3. An attempt is made to associate the existence of the maximum growth rate for l=2 with the presence of two spiral arms in most galaxies. It is shown that, when the longitudinal temperature is high enough, a rotating cylinder which is bounded in the radial direction is stable against arbitrary perturbations.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol.10, No. 3, pp. 3–11, May–June, 1969.  相似文献   

11.
A new macroscopic model for swelling porous media is derived based on a rigorous upscaling of the microstructure. Considering that at the microscale the medium is composed of a charged solid phase (e.g. clay platelets, bio-macromolecules, colloidal or polymeric particles) saturated by a binary monovalent aqueous electrolyte solution composed of cations + and anions – of an entirely dissociated salt, the homogenization procedure is applied to scale up the pore-scale model. The microscopic system of governing equations consists of the local electro-hydrodynamics governing the movement of the electrolyte solution (Poisson–Boltzmann coupled with a modified Stokes problem including an additional body force of Coulombic interaction) together with modified convection–diffusion equations governing cations and anions transport. This system is coupled with the elasticity problem which describes the deformation of the solid phase. Novel forms of Terzaghi's effective principle and Darcy's law are derived including the effects of swelling pressure and osmotically induced flows, respectively. Micromechanical representations are provided for the macroscopic physico-chemical quantities.  相似文献   

12.
The dynamic compressibility of porous NaCl of initial density 00=1.87 – 1.9 g/cm3 has been investigated on the pressure interval from 1 to 200 kbar. The dynamic compression parameters are determined from the data of electromagnetic and capacitive measurements of the wave and particle velocities of waves excited by explosion and impact. The results are compared with those of ultrasonic and static measurements. The experimental data indicate the inapplicability of the hydrodynamic model for describing the behavior of porous NaCl under dynamic loading in the region of stresses comparable with its strength.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 11, No. 2, pp. 134–139, March–April, 1970.The authors thank A. A. Ignatov for his help with the work, L. D. Livshits for the data from the static experiments, and G. P. Demidyuk for providing the opportunity of working with the ultrasonic installation.  相似文献   

13.
An analysis is carried out to study the effects of localized heating (cooling), suction (injection), buoyancy forces and magnetic field for the mixed convection flow on a heated vertical plate. The localized heating or cooling introduces a finite discontinuity in the mathematical formulation of the problem and increases its complexity. In order to overcome this difficulty, a non-uniform distribution of wall temperature is taken at finite sections of the plate. The nonlinear coupled parabolic partial differential equations governing the flow have been solved by using an implicit finite-difference scheme. The effect of the localized heating or cooling is found to be very significant on the heat transfer, but its effect on the skin friction is comparatively small. The buoyancy, magnetic and suction parameters increase the skin friction and heat transfer. The positive buoyancy force (beyond a certain value) causes an overshoot in the velocity profiles.A mass transfer constant - B magnetic field - Cfx skin friction coefficient in the x-direction - Cp specific heat at constant pressure, kJ.kg–1.K - Cv specific heat at constant volume, kJ.kg–1.K–1 - E electric field - g acceleration due to gravity, 9.81 m.s–2 - Gr Grashof number - h heat transfer coefficient, W.m2.K–1 - Ha Hartmann number - k thermal conductivity, W.m–1.K - L characteristic length, m - M magnetic parameter - Nux local Nusselt number - p pressure, Pa, N.m–2 - Pr Prandtl number - q heat flux, W.m–2 - Re Reynolds number - Rem magnetic Reynolds number - T temperature, K - To constant plate temperature, K - u,v velocity components, m.s–1 - V characteristic velocity, m.s–1 - x,y Cartesian coordinates - thermal diffusivity, m2.s–1 - coefficient of thermal expansion, K–1 - , transformed similarity variables - dynamic viscosity, kg.m–1.s–1 - 0 magnetic permeability - kinematic viscosity, m2.s–1 - density, kg.m–3 - buoyancy parameter - electrical conductivity - stream function, m2.s–1 - dimensionless constant - dimensionless temperature, K - w, conditions at the wall and at infinity  相似文献   

14.
We study contaminant flow with sources in a fractured porous mediumconsisting of a single fracture bounded by a porous matrix. In the fracturewe assume convection, decay, surface adsorption to the interface, and lossto the porous matrix; in the porous matrix we include diffusion, decay,adsorption, and contaminant sources. The model leads to a nonhomogeneous,linear parabolic equation in a quarter-space with a differential equationfor an oblique boundary condition. Ultimately, we study the problemu t = u yy – u + f(x,y,t),x,y>0, t>0, u t = –u x + u y – u on y = 0; u(0,0,t) =u0(t), t>0,with zero initial data. Using Laplace transforms we obtain the Green'sfunction for the problem, and we determine how contaminant sources in theporous media are propagated in time.  相似文献   

15.
The problem of the stability of a binary mixture in a porous medium is investigated in the complete formulation with allowance for cross kinetic and gravitational effects. Boundary conditions of the first and second kinds for a plane horizontal layer of the porous medium are considered. The boundaries of the region of instability are determined. The region of the parameters corresponding to the stability paradox effect, i.e., the instability of a mixture that becomes heavier with depth, is described. It is established that the multicomponent nature of the mixture helps to stabilize the equilibrium state.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 110–119, January–February, 1993.  相似文献   

16.
A closed form solution to the convective instability in a composite system of fluid and porous layers with vertical throughflow is presented. The boundaries are considered to be rigid-permeable and insulating to temperature perturbations. Flow in the porous layer is governed by Darcy–Forchheimer equation and the Beavers–Joseph condition is applied at the interface between the fluid and the porous layer. In contrast to the single-layer system, it is found that destabilization due to throughflow arises, and the ratio of fluid layer thickness to porous layer thickness, , too, plays a crucial role in deciding the stability of the system depending on the Prandtl number.  相似文献   

17.
This paper is devoted to the study of the stability of oil displacement in porous media. Results are applied to the secondary oil recovery process: the oil contained in a porous medium is obtained by pushing it with a second fluid (usually water). As in Saffman and Taylor (1958) and Gorell and Homsy (1983) the porous medium will be modelized by a Hele-Shaw cell. If the second fluid is less viscous, the fingering phenomenon appears, first studied by Saffman and Taylor (1959). In order to minimize this instability, we consider, as in Gorell and Homsy (1983), an intermediate polymer-solute region (i.r.), with a variable viscosity \mu , between water and oil. This viscosity increases from water to oil. The linear stability of the interfaces is governed by a Sturm–Liouville problem which contains eigenvalues in the boundary conditions. Its characteristic values are the growth constants of the perturbations. The stability can be improved by choosing a minimizing viscosity profile \mu which gives us an arbitrary small positive growth constant. In this paper, we suggest a class of minimizing profiles. This main result is obtained by considering the Rayleigh quotient to estimate – without any discretization – the characteristic values of the above Sturm–Liouville problem. A finite-difference procedure and Gerschgorins localization theorem were used by Carasso and Paa (1998) to solve the above problem. A formula of an exponential viscosity profile in (i.r.) was obtained. The new class of minimizing viscosity profiles described in this paper includes linear and exponential profiles. The corresponding total amount of polymer and the (i.r.) length are estimated in terms of the limit value of \mu on the (i.r.) – oil interface. Our results are compared with the previous theoretical viscosity profiles. We show that the linear case is more favorable compared with the exponential profile. We give lower estimates of the total amount of polymer and of the (i.r.) length for a given improvement of the stability , compared with the Saffman–Taylor case.  相似文献   

18.
Recent displacement experiments show anomalously rapid spreading of water during imbibition into a prewet porous medium. We explain this phenomenon, calledhyperdispersion, as viscous flow along fractal pore walls in thin films of thicknessh governed by disjoining forces and capillarity. At high capillary pressure, total wetting phase saturation is the sum of thin-film and pendular stucture inventories:S w =S tf +S ps . In many cases, disjoining pressure is inversely proportional to a powerm of film thicknessh, i.e. h –m , so thatS tf P c –1/m. The contribution of fractal pendular structures to wetting phase saturation often obeys a power lawS ps P c (3–D), whereD is the Hausdorff or fractal dimension of pore wall roughness. Hence, if wetting phase inventory is primarily pendular structures, and if thin films control the hydraulic resistance of wetting phase, the capillary dispersion coefficient obeysD c S w v , where v=[3–m(4–D) ]/m(3–D). The spreading ishyperdispersive, i.e.D c (S w ) rises as wetting phase saturation approaches zero, ifm>3/(4–D),hypodispersive, i.e.D c (S 2) falls as wetting phase saturation tends to zero, ifm<3>D), anddiffusion-like ifm=3/(4–D). Asymptotic analysis of the capillary diffusion equation is presented.  相似文献   

19.
Models of elastoplastic media are applied to soils and rocks [1, 2]. In conformity with experimental data [3–5] a model of soils and rocks as a viscoplastic medium has been proposed [6]. Below we give a solution, based on this model, of the problem on the propagation of a plane one-dimensional wave. As the basis of computer programs we propose a finite-difference representation of the equations of motion of a continuous medium in Lagrange coordinates and the differential equations governing the behavior of the medium. A direct calculation procedure with pseudoviscosity is applied. It is shown that the damping of plane waves is connected with two energy-dissipating mechanisms, determined by the viscous and plastic properties of the medium. The washing out of a discontinuity can occur in the absence of a segment of the dynamical compression curve that is concave to the strain axis. Under certain conditions the maximum strain is attained during the phase of decreasing stress. These results agree with the experimental data [3].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 114–120, March–April, 1973.The authors thank S. S. Grigoryan for his discussion of the work.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号