首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of photosynthetically active radiation (400-700 nm) (PAR) in modifying plant sensitivity and photomorphogenic responses to ultraviolet-B (280-320 nm) (UV-B) radiation has been examined by a number of investigators, but few studies have been conducted on ultraviolet-A (320-400 nm) (UV-A), UV-B and PAR interactions. High ratios of PAR-UV-B and UV-A-UV-B have been found to be important in ameliorating UV-B damage in both terrestrial and aquatic plants. Growth chamber and greenhouse studies conducted at low PAR, low UV-A and high UV-B often show exaggerated UV-B damage. Spectral balance of PAR, UV-A and UV-B has also been shown to be important in determining plant sensitivity in field studies. In general, one observes a reduction in total biomass and plant height with decreasing PAR and increasing UV-B. The protective effects of high PAR against elevated UV-B may also be indirect, by increasing leaf thickness and the concentration of flavonoids and other phenolic compounds known to be important in UV screening. The quality of PAR is also important, with blue light, together with UV-A radiation, playing a key role in photorepair of DNA lesions. Further studies are needed to determine the interactions of UV-A, UV-B and PAR.  相似文献   

2.
The effects of ultraviolet radiation (UV-A: 320-400 nm and UV-B: 280-320 nm) and methyl viologen (MV) single or combined exposure, on the cell growth, viability and morphology of two strains of the unicellular flagellate Euglena gracilis, using the Z strain as a plant model and the achlorophyllous mutant SMZ strain as an animal model were investigated. Cell growth was not affected by MV only, whereas UV-A or UV-B single and combined exposure with MV inhibited the cell growth or decreased the viability. The SMZ strain had a higher number of abnormal cells than the Z strain after the third dose of UV-B was delivered simultaneously with MV. The abnormal cell number decreased when E. gracilis SMZ cells were preincubated with 100 microM rutin prior to the UV-B and MV exposure. There were higher abnormal cell numbers with groups exposed to UV rather than MV single exposure. Combined exposure to UV-B and 200 microM MV induced the highest levels of TBARS in both strains, and with the supplementation of rutin these high levels were suppressed. These results suggest that UV-A or UV-B irradiation alone or combined with MV cause considerable oxidative damage in E. gracilis cells, and rutin supplementation may suppress their adverse effects.  相似文献   

3.
Evidence is mounting that UV-B and UV-A radiation affect skin differently in responses as diverse as erythema and elastosis. We found in this study that collagen metabolism was also differentially affected. Albino hairless mice were irradiated with two UV-A sources: (1) UVASUN 3000 (340-400 nm) for cumulative exposures of 4000 and 8000 J/cm2; (2) a xenon solar simulator filtered to provide full spectrum UV-A (320-400 nm) and long wavelength UV-A (335-400 nm) for cumulative exposures of 3000 and 4000 J/cm2 respectively. Collagen was isolated from other skin proteins by acid extraction, pepsin digestion and salt precipitation. Collagen types I and III were separated by interrupted gel electrophoresis. Ultraviolet-A rendered the collagen highly resistant to pepsin digestion. In age-matched controls only 16-18% of the total collagen remained insoluble, whereas in long wavelength UV-A-irradiated skins the insoluble fraction was as high as 87%. A dose response was noted at 4000 and 8000 J/cm2 as delivered by the UVASUN. Recovery of collagen from the pepsin soluble fraction was low in all UV-A groups and the amount of type III so small that determination of ratios of type III to I collagen was unreliable. These results suggest that chronic UV-A radiation may increase cross-linking of dermal collagen.  相似文献   

4.
Penetration of ultraviolet radiation in the marine environment. A review   总被引:1,自引:0,他引:1  
UV radiation (UVR) is a significant ecological factor in the marine environment that can have important effects on planktonic organisms and dissolved organic matter (DOM). The penetration of UVR into the water column is likely to change in the near future due to interactions between global warming and ozone depletion. In this study we report underwater instruments employed for the measurement of UVR and we review data dealing with the depth of UVR penetration in different oceanic areas including the open ocean, Antarctic waters and coastal waters. We provide the 10% irradiance depth (Z10%) for UV-A and UV-B as well as for DNA damage effective dose (DNA), which we calculated from the values of diffuse attenuation coefficients or vertical profiles reported in the literature. We observe a clear distinction between open ocean (high Z10%, no variation in the ratio UV-B/UV-A), Antarctic waters (increase in the ratio UV-B/UV-A during ozone hole conditions) and coastal waters (low Z10%, no variation in the ratio UV-B/UV-A). These variations in the penetration of UVR could lead to differences in the relative importance of photobiological/photochemical processes. We also compare in this study the penetration of UV-B (unweighted and weighted by the Setlow action spectrum) and DNA damage effective dose.  相似文献   

5.
The ongoing anthropogenically caused ozone depletion and climate change has increased the amount of biologically harmful UV-B radiation, which is detrimental to fish in embryonal stages. The effects of UV-B radiation on the levels and locations of DNA damage manifested as cyclobutane pyrimidine dimers (CPDs), heat shock protein 70 (HSP70) and p53 protein in newly hatched embryos of pike were examined. Pike larvae were exposed in the laboratory to current and enhanced doses of UV-B radiation. UV-B exposure caused the formation of CPDs in a fluence rate-dependent manner, and the CPDs were found deeper in the tissues with increasing fluence rates. UV-B radiation induced HSP70 in epidermis, and caused plausible p53 activation in the brain and epidermis of some individuals. Also at a fluence rate occurring in nature, the DNA damage in the brain and eyes of pike and changes in protein expression were followed by severe behavioral disorders, suggesting that neural molecular changes were associated with functional consequences.  相似文献   

6.
Fluocinolone 16,17-acetonide is a corticosteroid used topically to treat various inflammatory skin diseases. Its photoreactivity was studied under UV-A and UV-B light in aqueous buffer in the presence of oxygen. This drug is photolabile under UV-B light and, to a lesser extent, under UV-A light, which is absorbed far less. In phosphate buffer, approximately 80% of fluocinolone acetonide decomposes after 5 J/cm2 of UV-B irradiation, whereas under 30 J/cm2 of UV-A light approximately only 20% decomposes. Both the drug and its photoproducts have been evaluated through a battery of in vitro studies and found to cause photohemolysis and induce photodamage to proteins (erythrocyte ghosts, bovine serum albumin) and linoleic acid. In addition, one of the photoproducts (the 17-hydroperoxy derivative) is highly toxic in the dark. Therefore, both loss of therapeutic activity and light-induced adverse effects may be expected when patients expose themselves to sunlight after drug administration. A major mechanism for phototoxicity involves radicals forming from drug breakdown, at least under UV-B, although reactive oxygen species may play a role, particularly under UV-A.  相似文献   

7.
Albino hairless mice (Skh: HR-1) exposed chronically to sub-erythemal doses of UV radiation display physical, visible and histological alterations. Using narrow bandwidth radiation covering the UV radiation spectrum from 280-380 nm, the wavelength dependence of these alterations was determined. The wavelength dependence spectra indicate that for all but one parameter measured (skin sagging), UV-B radiation is considerably more efficient than UV-A radiation in producing changes in the skin. However, in natural sunlight there is considerably more UV-A than UV-B radiation, providing the potential for UV-A to have a larger contribution to skin damage than UV-B. This argues in favor of using broad spectrum photoprotective agents to shield the skin adequately from UV-induced aging. The spectra were also used to develop potential associations among events by determining which events occur at similar wavelengths. There seems to be a correspondence between mouse visible skin wrinking (UV-B event) and two histological events: increase in glycosaminoglycans and alteration in collagen. There was no obvious correspondence among UV-A-induced events.  相似文献   

8.
Abstract— The Living Skin Equivalent (LSE™) is an organotypic coculture composed of human dermal fibroblasts interspersed in a collagen-containing matrix and overlaid with human keratinocytes forming a stratified epidermis. The LSE has a dry, air-exposed epidermal surface suitable for the application of oils, creams and emulsions. These features suggested its feasibility as an in vitro skin model for studying the protective effects of sunscreens. Using the thiazolyl blue (MTT) conversion assay as a measure of mitochondrial function, the extent of cytotoxicity induced by various doses of UV-R (280–400 nm) or UV-A (320–400 nm) was evaluated in the LSE. The doses of UV radiation that caused 50% reductions in MTT conversion (UV-R50 or UV-A50) in different lots of LSE were 0.053 ± 0.021 J/cm2 (n = 29) and 11.6 ± 4.9 J/cm2 (n = 17) for UV-R and UV-A, respectively. The protective effects of an 8% homosylate standard and of five UV-A sunscreens, topically applied to the LSE, were determined and compared with their reported protection factors in human skin. Morphological changes and the release of proinflammatory mediators (interleukin-1-α, tumor necrosis factor-α and prostaglandin E2) implicated in UV-induced erythema were also demonstrated in the LSE exposed to UV-A or UV-B. The data suggest that the LSE can be used for studying the effects of U V radiation on skin and may have utility for assessing the efficacy of certain sunscreens against UV-B and UV-A.  相似文献   

9.
There is a continuously growing interest in medical applications of ultraviolet radiation (UV-A and long-wavelength UV-B) especially for laser surgery, phototherapy and photodiagnostics of human internal organs. UV-B and UV-A radiation is potentially mutagenic, however, there has been very little information published to date concerning the significance of possible deleterious action of such photons on cells of internal tissues. The aim of this study is to compare the sensitivities of skin cells to those of internal organs upon exposure to UV-A. To assess this sensitivity we have determined the UV-A dose-dependent frequency of nuclear DNA breaks detected with the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL) technique. The materials for the study were macroscopic samples of porcine skin, colon and esophagus. The UV-A dose ranged from 0.1 to 1000 mJ/cm2, which is similar to doses received by cells in regions examined with laser-induced fluorescence or by cells surrounding areas subject to a laser ablation. To reduce the influence of DNA repair processes the tissue samples were kept at a low temperature during the irradiation and were deep frozen immediately after completing the irradiation procedure. The cells of the internal organs are much more susceptible to UV-A-induced breaking of DNA than the skin cells. The percentage fractions and the spatial distributions of the damaged cells and the characteristics of the UV-A dose dependence seem to vary by type of internal organ.  相似文献   

10.
11.
We report the effects of 8-methoxypsoralen (8-MOP) plus ultraviolet-A (UV-A) irradiation on interleukin-1 (IL-1) production by murine epidermal keratinocytes, correlating its effect on IL-1 with cell viability, DNA synthesis, and 8-MOP-DNA photoadduct formation. Freshly isolated murine keratinocytes were treated with various doses of 8-MOP (5-100 ng/mL; incubation time, 30 min) plus 1 J/cm2 UV-A and cultured for 1-3 days. The IL-1/epidermal cell-derived thymocyte-activating factor (ETAF) activity in both supernatant and cell extract was reduced proportionately with increasing doses of 8-MOP/UV-A. Interleukin-1 inhibitors induced by 8-MOP plus UV-A were not detected in either supernatant or cell extract. A clear reduction of the IL-1 production was induced by the treatment as low as 15 ng/mL 8-MOP plus 1 J/cm2 UV-A, which led to the formation of 0.52 8-MOP photoadducts per million DNa bases and affected neither cell viability nor DNA synthesis of the treated cells. Cells treated with 100 ng/mL 8-MOP and 1 J/cm2 UV-A exhibited 57% suppression of IL-1 production in both 2- and 3-day culture samples. This treatment resulted in the formation of 3.8 photoadducts per million bases as well as significant abrogation of DNA synthesis although cell viability was unchanged. These observations provide some insights into the phototoxicity mechanisms of 8-MOP and the effect of PUVA therapy on the cytokine regulation in keratinocytes.  相似文献   

12.
Synthesis of extracellular matrix (ECM) proteins and their degradation by matrix metalloproteinases (MMP) are part of the dermal remodeling resulting from chronic exposure of skin to ultraviolet radiation (UVR). We have compared two alternative mechanisms for these responses, namely, a direct mechanism in which UV-B or UV-A is absorbed by fibroblasts and an indirect mechanism in which cytokines, produced in skin in response to UVR, stimulate production of the ECM proteins and MMP. These studies were carried out on human dermal fibroblasts grown in contracted, free-floating 9 day old collagen gels as a dermal equivalent. Synthesis of tropoelastin, collagen, fibrillin, MMP-1, -2, -3 and -9 and tissue inhibitors of metalloproteinases (TIMP)-1 and -2 were measured. Tropoelastin, collagen and fibrillin levels were stable between days 4 and 10, and MMP and TIMP decreased by day 10. Neither UV-B (2.5-50 mJ/cm2) nor UV-A (2-12 J/cm2) altered synthesis of ECM proteins, but UV-A increased MMP-1 and -3 production. Tropoelastin synthesis increased in response to transforming growth factor-beta1 (5 ng/mL) treatment. Both interleukin-1beta and tumor necrosis factor-alpha (10 ng/mL) decreased fibrillin messenger RNA levels but increased MMP-1, -3 and -9 synthesis markedly. Collagen synthesis was not modulated by UV-B, UV-A or cytokine treatment. These results indicate that certain cytokines may have greater effects on production of ECM proteins and MMP than absorption of UV-B and UV-A by fibroblasts grown in dermal equivalents and suggest that the former pathway may play a role in the dermal remodeling in photoaged skin.  相似文献   

13.
Abstract— The increase in UV-B radiation(290–320 nm) penetrating to the earth's surface as a result of the chemical depletion of the stratospheric ozone layer is an important environmental concern. In most studies using artificial UV-B sources, the determination of enhanced UV-B radiation effects on plants relies on equivalent UV-A radiation(320–400 nm) from the experimental UV-B fluorescent lamp source, filtered with either cellulose diacetate (CA) to create UV-B treatments, or with type S Mylar or polyester (PE) to create controls (no UV-B). The spectral irradiance in the UV-A was measured in the dark below lamps at two daily UV-B irradiance levels (14.1 and 10.7 W m-2) with CA and PE at two ages. Highly significant differences in UV-A radiation (P 0.01) were measured below the treatment/control pairs at both fluence rates and filter ages. Filter aging was observed, which reduced the UV-A irradiance, especially for PE. The total daily ambient UV-A irradiance was also determined in the glasshouse at three seasons: the fall equinox, summer and winter, from which the total daily UV-A (lamp + ambient) irradiances were calculated. The addition of low to moderate ambient irradiance removed the treatment/control differences in the longwave UV-A(350–400 nm); however, the treatment/contro1 differences remained in the shortwave UV-A(320–350 nm), which was restricted by the glass, and in the total UV-A. The treatment/control differences persisted in the shortwave UV-A for the higher irradiance level, even under high summer ambient light. Also, spectral ratios (UVB:UV-A and shortwave: longwave UV-A) for all treatment groups decreased as the ambient UV-A radiation increased. Therefore, a range of experimental conditions exist where PE-covered lamps do not provide adequate control for UV-A irradiance, relative to the CA treatment, for glasshouse/growth chamber experiments. Potential complications in the interpretation of plant response exist for UV-B experiments conducted under low ambient light conditions (e.g. growth chambers; glasshouse in winter) or high daily UV-B irradiances (e.g. 14 kJ m-2) for those plant responses that are sensitive to UV-A radiation.  相似文献   

14.
Laboratory tests confirmed a negative and variable response of the following four species to artificial UV radiation: Cypridopsis vidua, an ostracode; Chironomus riparius, a midge larvae; Hyalella azteca, an amphipod; and Daphnia magna, a daphnid. Severe damage occurred at UV-B irradiance ranging from 50 to 80% of incident summer values. Under constant exposure to UV and photosynthetically active radiation (PAR) the acute lethal response was recorded at 0.3, 0.8, 0.8 and 4.9 W m-2 UV-B for D. magna, H. azteca, C. riparius and C. vidua, respectively. Sublethal UV-B damage to invertebrates included impaired movement, partial paralysis, changes in pigmentation and altered water balance (bloating). A series of UV-B, UV-A and PAR treatments, applied separately and in combination, revealed a positive role for both UV-A and PAR in slowing down UV-B damage. Mean lethal concentration values of the species typically more tolerant to UV and PAR (Cypridopsis, Chironomus) decreased conspicuously when both UV-A and PAR were eliminated. For UV-B-sensitive species (Hyalella, Daphnia) these differences were notably smaller. We suggest that this gradation of sensitivity among the tested species demonstrates potential differences in repairing mechanisms which seem to work more efficiently for ostracodes and chironomids than for amphipods and daphnids. Manipulations with a cellulose acetate filter showed that lower range UV-B (280-290 nm), produced by FS-40 lamps, may cause excessive UV damage to invertebrates.  相似文献   

15.
Reactive oxygen species (ROS) are involved in the oxidative damage of the cyanobacterium Anabaena sp. caused by UV-B (280-315 nm) radiation. UV-B-induced overproduction of ROS as well as the oxidative stress was detected in vivo by using the ROS-sensitive probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Thiobarbituric acid reactive substances (TBARS) and fluorometric analysis of DNA unwinding (FADU) methods were adapted to measure lipid peroxidation and DNA strand breaks in Anabaena sp. Moderate UV-B radiation causes an increase of ROS production, enhanced lipid peroxidation and DNA strand breaks, yielding a significantly decreased survival. In contrast, the supplementation of UV-A in our work only showed a significant increase in total ROS levels and DNA strand breaks while no significant effect on lipid peroxidation, chlorophyll bleaching or survival was observed. The presence of ascorbic acid and N-acetyl-L-cysteine (NAC) reversed the oxidative stress and protected the organisms from chlorophyll bleaching and the damage of photosynthetic apparatus induced by UV-B significantly, resulting in a considerably higher survival rate. Ascorbic acid also exhibited a significant protective effect on lipid peroxidation and DNA strand breaks while NAC did not show a substantial effect. These results suggest that ascorbic acid exhibited significantly higher protective efficiency with respect to DNA strand breaks and survival than NAC while NAC appears to be especially effective in defending the photosynthetic apparatus from oxidative damage.  相似文献   

16.
The chlorophyte Prasiola stipitata produces a UV-absorbing substance with an absorption maximum at 324 nm. The wavelength-dependent induction of the synthesis of this substance was investigated using simulated solar radiation in combination with 15 cut-off and one broad-band filter. The algae were exposed from three different distances (89, 100 and 119 cm) to the solar simulator producing a maximum of 203.58, 1.24 and 46.86 W/m(2) and a minimum of 107.94, 0.64 and 24.44 W/m(2) irradiances for PAR, UV-B and UV-A, respectively. A polychromatic action spectrum was calculated from the pooled results showing a clear maximum at 300 nm in the long-wavelength UV-B range, but there is still some induction caused by UV-A and PAR. The ratio of the effectiveness from PAR to UV-A to UV-B amounts to 1:2:22.  相似文献   

17.
The aim of the present study is to evaluate the occurrence of oxidative stress in the cladoceran Daphnia longispina exposed to UV-A and UV-B radiation. The activity of antioxidant enzymes and lipid peroxidation markers is investigated and the protective action of ascorbic acid determined. Results show differences in the lethality radioinduced by UV-A and UV-B. Both UV-A and UV-B exposure cause an important increase in malonaldehyde (MDA) concentration and catalase activity. Ascorbic acid addition reduces the MDA concentration, indicating that the oxidative stress caused by either UV-A or UV-B radiation can be controlled by antioxidants. The increase of the antioxidant enzymes may be a response mechanism to oxidative stress.  相似文献   

18.
19.
Abstract— Copper(II), in the presence of UV-B radiation(280–315 nm), can generate single-strand breaks in the sugar-phosphate backbone of pBR322 plasmid DNA. A low level of single-strand backbone breaks occurs in the presence of Cu(II) alone, but UV-B irradiation increases the rate by the more than 100-fold. Concomitant with the damage to the DNA backbone is a loss of transforming activity. Oxygen is required for generation of the single-strand breaks but not for the loss of transforming activity. A DNA glycosylase (Fpg), which participates in the repair of certain DNA nitrogenous base damage, does not repair plasmid DNA damaged by Cu(II). The hydroxyl radical scavenging compound DMSO is only somewhat effective at protecting the physical and biological properties of the DNA. These results with Cu(II) are compared to those obtained previously with pBR322 plasmid DNA in the presence of Fe(III) and UV-A.  相似文献   

20.
We showed in a recent study that topical retinyl palmitate prevented UV-B-induced DNA damage and erythema in humans. Given that retinyl palmitate is a precursor of retinoic acid, the biological form of vitamin A that acts through nuclear receptors, we wondered whether these protective effects toward UV-B exposure were either receptor dependent or linked to other properties of the retinoid molecule such as its spectral properties. We determined the epidermal retinoid profile induced by topical retinoic acid in hairless mice and analyzed its effect on markers of DNA photodamage (thymine dimers) and apoptosis following acute UV-B exposure; we compared these effects to those induced by other natural topical retinoids (retinaldehyde, retinol and retinyl palmitate) which do not directly activate the retinoid receptors. We then analyzed the direct action of these retinoids on UV-B-induced DNA damage and apoptosis in cultured A431 keratinocytes. Topical retinoic acid significantly decreased (approximately 50%) the number of apoptotic cells, as well as the formation of thymine dimers in the epidermis of mice exposed to acute UV-B. Interestingly, the other topical retinoids decreased apoptosis and DNA damage in a similar way. On the other hand, neither retinoic acid nor the other retinoids interfered with the apoptotic process in A431 keratinocytes exposed to UV-B, whereas DNA photodamage was slightly decreased. We conclude that the decrease of apoptotic cells in hairless mouse epidermis following topical retinoids and UV-B irradiation reflects a protection of the primary targets of UV-B (DNA) by a mechanism independent of the activation of retinoid nuclear receptors, rather than a direct inhibition of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号