首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
In this paper, we analyze the robustness of global exponential stable stochastic delayed systems subject to the uncertainty in parameter matrices. Given a globally exponentially stable systems, the problem to be addressed here is how much uncertainty in parameter matrices the systems can withstand to be globally exponentially stable. The upper bounds of the parameter uncertainty intensity are characterized by using transcendental equation for the systems to sustain global exponential stability. Moreover, we prove theoretically that, the globally exponentially stable systems, if additive uncertainties in parameter matrices are smaller than the upper bounds arrived at here, then the perturbed systems are guaranteed to also be globally exponentially stable. Two numerical examples are provided here to illustrate the theoretical results.  相似文献   

2.
In this paper, we prove that a predator-prey model with sigmoid functional response and logistic growth for the prey has a unique stable limit cycle, if the equilibrium point is locally unstable. This extends the results of the literature where it was proved that the equilibrium point is globally asymptotically stable, if it is locally stable. For the proof, we use a combination of three versions of Zhang Zhifen''s uniqueness theorem for limit cycles in Li$\acute{\rm e}$nard systems to cover all possible limit cycle configurations. This technique can be applied to a wide range of differential equations where at most one limit cycle occurs.  相似文献   

3.
ABSTRACT

This contribution deals with the study of the almost sure exponential stability of large-scale stochastic systems with multiplicative noises. Under a Lipschitz-like assumption, it is proven that this stability is guaranteed if each “diagonal” subsystem is almost surely exponentially stable.  相似文献   

4.
This work is concerned with stability of stochastic differential delay equations with Markovian switching, where the modulating Markov chain has a large state space and is subject to both fast and slow movements. Under simple conditions, we demonstrate that if the limit systems are pth-moment exponentially stable, then the original systems are pth-moment exponentially stable in an appropriate sense. In addition, the exponential stability is also investigated. Moreover, stability in distribution is obtained for such hybrid systems.  相似文献   

5.
We discuss three examples of bimolecular mass-action systems with three species, due to Feinberg, Berner, Heinrich, and Wilhelm. Each system has a unique positive equilibrium which is unstable for certain rate constants and then exhibits stable limit cycles, but no chaotic behaviour. For some rate constants in the Feinberg–Berner system, a stable equilibrium, an unstabe limit cycle, and a stable limit cycle coexist. All three networks are minimal in some sense.By way of homogenising these three examples, we construct bimolecular mass-conserving mass-action systems with four species that admit a stable limit cycle. The homogenised Feinberg–Berner system and the homogenised Wilhelm–Heinrich system admit the coexistence of a stable equilibrium, an unstable limit cycle, and a stable limit cycle.  相似文献   

6.
Summary We present a framework for analysing arbitrary networks of identical dissipative oscillators assuming weak coupling. Using the symmetry of the network, we find dynamically invariant regions in the phase space existing purely by virtue of their spatio-temporal symmetry (the temporal symmetry corresponds to phase shifts). We focus on arrays which are symmetric under all permutations of the oscillators (this arises with global coupling) and also on rings of oscillators with both directed and bidirectional coupling. For these examples, we classify all spatio-temporal symmetries, including limit cycle solutions such as in-phase oscillation and those involving phase shifts. We also show the existence of “submaximal” limit cycle solutions under generic conditions. The canonical invariant region of the phase space is defined and used to investigate the dynamics. We discuss how the limit cycles lose and gain stability, and how symmetry can give rise to structurally stable heteroclinic cycles, a phenomenon not generically found in systems without symmetry. We also investigate how certain types of coupling (including linear coupling between oscillators with symmetric waveforms) can give rise to degenerate behaviour, where the oscillators decouple into smaller groups.  相似文献   

7.
We are interested in hyperbolic systems of conservation laws with relaxation and dissipation, particularly the zero relaxation limit. Such a limit is of interest in several physical situations, including gas flow near thermo-equilibrium, kinetic theory with small mean free path, and viscoelasticity with vanishing memory. In this article we study hyperbolic systems of two conservation laws with relaxation. For the stable case where the equilibrium speed is subcharacteristic with respect to the frozen speeds, we illustrate for a model in viscoelasticity that no oscillation develops for the nonlinear system in the zero relaxation limit. For the marginally stable case where the equilibrium speed may equal one of the frozen speeds, we show for a model in phase transitions that no oscillation arises when the dissipation is present and goes to zero more slowly than the relaxation. Our analysis includes the construction of suitable entropy pairs to derive energy estimates. We need such energy estimates not only for the compactness properties but also for the deviation from the equilibrium of the solutions for the relaxation systems. The theory of compensated compactness is then applied to study the oscillation in the zero relaxation limit. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
This article presents an analytical investigation on stability and local bifurcation behavior due to exponentially decaying friction characteristics in the sliding domain of a simple friction oscillator, which is commonly referred to as “mass-on-a-belt”-oscillator. Friction is described by a friction coefficient which in the sense of Stribeck depends on the relative velocity between the two tribological partners.For such a characteristic the stability and bifurcation behavior are discussed. It is shown, that the system can undergo a subcritical Hopf-bifurcation from an unstable steady-state fixed-point to an unstable limit cycle, which separates the basins of the stable steady-state fixed-point and the self-sustained stick-slip limit cycle.Therefore, only a local examination of the eigenvalues at the steady-state, as is the classical approach when investigating conditions for the onset of friction-induced vibrations, may not give the whole picture, since the stable region around the steady-state fixed-point may be rather small.Furthermore, the results of above considerations are applied to a brake-noise problem. It is found that, in contrast to squeal, a decaying friction characteristic may be a satisfying explanation for the onset low-frequency groan. The analytical results are compared with experimental measurements.  相似文献   

9.
A nonlinear system for controlling flutter in an aeroelastic system is proposed. The dynamic model describes the plunge and pitch motion of a wing. Interacting nonlinear forces such as structural and aerodynamic forces cause destabilizing phenomena such as flutter and limit cycle oscillation on the wing. Aeroelastic models have a wing section with only a single trailing-edge control surface for suppressing limit cycle oscillation. When modeling a single control surface, the controller design can achieve trajectory control of either plunge displacement or pitch angle, but not both, and internal dynamics describe the residual motion in closed-loop systems. Internal dynamics of aeroelasticity depend on model parameters such as freestream velocity and spring constant. Since single control surfaces have limited effectiveness, this study used leading- and trailing-edge control surfaces to improve control of limit-cycle oscillation. Moreover, two control surfaces were used to provide sufficient flexibility to shape both the plunge and the pitch responses. In this study, high order sliding mode control (HOSMC) with backstepping design achieved system stability and eliminated limit cycle phenomenon. Compared to the conventional sliding mode control design, the proposed control law not only preserves system robustness, but also avoids chatter phenomenon. Simulation results show that the proposed controller effectively regulate the response to origin in state space even under saturated controller input.  相似文献   

10.
This paper is concerned with the delay-dependent exponential robust filtering problem for switched Hopfield neural networks with time-delay. A new delay-dependent switched exponential robust filter is proposed that results in an exponentially stable filtering error system with a guaranteed robust performance. The design of the switched exponential robust filter for these types of neural networks can be achieved by solving a linear matrix inequality (LMI), which can be easily facilitated using standard numerical packages. An illustrative example is given to demonstrate the effectiveness of the proposed filter.  相似文献   

11.
主要研究了闭环系统的极点约束在一个给定圆盘中的保性能控制问题,基于线性矩阵不等式处理方法给出了状态反馈控制器存在的充要条件,并利用线性矩阵不等式的解给出了保性能控制器的设计方法,得到一个状态反馈控制器,使得对所有允许的不确定性闭环系统稳定,并且闭环性能指标值不超过某个确定的上界.最后以数值例子验证了结果的正确性.  相似文献   

12.
The present paper is devoted to the existence of limit cycles of planar piecewise linear (PWL) systems with two zones separated by a straight line and singularity of type “focus-focus” and “focus-center.” Our investigation is a supplement to the classification of Freire et al concerning the existence and number of the limit cycles depending on certain parameters. To prove existence of a stable limit cycle in the case “focus-center,” we use a pure geometric approach. In the case “focus-focus,” we prove existence of a special configuration of five parameters leading to the existence of a unique stable limit cycle, whose period can be found by solving a transcendent equation. An estimate of this period is obtained. We apply this theory on a two-dimensional system describing the qualitative behavior of a two-dimensional excitable membrane model.  相似文献   

13.
In this paper, the stability properties for a class of switched stochastic systems with commutative componentwise subsystem matrices are studied. Under some switching law, the trivial solutions of the above systems are proved to be exponentially stable in mean square and almost sure exponentially stable if the random perturbations are sufficiently "small".  相似文献   

14.
In this paper, we study the stability property for a class of switched linear systems whose subsystems are normal. The subsystems can be continuous-time or discrete-time ones. We show that when all the continuous-time subsystems are Hurwitz stable and all the discrete-time subsystems are Schur stable, a common quadratic Lyapunov function exists for the subsystems and thus the switched system is exponentially stable under arbitrary switching. We show that when unstable subsystems are involved, for a desired decay rate of the system, if the activation time ratio between stable subsystems and unstable ones is less than a certain value (calculated using the decay rate), then the switched system is exponentially stable with the desired decay rate.  相似文献   

15.
In this paper, we study the stability property for a class of switched linear systems whose subsystems are normal. The subsystems can be continuous-time or discrete-time ones. We show that when all the continuous-time subsystems are Hurwitz stable and all the discrete-time subsystems are Schur stable, a common quadratic Lyapunov function exists for the subsystems and thus the switched system is exponentially stable under arbitrary switching. We show that when unstable subsystems are involved, for a desired decay rate of the system, if the activation time ratio between stable subsystems and unstable ones is less than a certain value (calculated using the decay rate), then the switched system is exponentially stable with the desired decay rate.  相似文献   

16.
孟祥旺  蒋威 《应用数学》2012,25(2):438-446
本文处理了一类具与模式有关的时变时滞和 Markovian转换的不确定奇异随机系统的鲁棒H∞滤波问题.所考虑的系统包含参数不确定性,Markovian参数,随机扰动和与模式有关的时变时滞.本文的目的是设计一个滤波器以保证滤波错误系统是正则的、无脉冲的、鲁棒指数均方稳定的和可达到一个给定的 H∞扰动衰减水平.文章首先得到所求鲁棒指数H∞滤波器存在的充分条件,然后给出所求滤波器参数的显示表示.  相似文献   

17.
It is known that rank-two bimolecular mass-action systems do not admit limit cycles. With a view to understanding which small mass-action systems admit oscillation, in this paper we study rank-two networks with bimolecular source complexes but allow target complexes with higher molecularities. As our goal is to find oscillatory networks of minimal size, we focus on networks with three reactions, the minimum number that is required for oscillation. However, some of our intermediate results are valid in greater generality. One key finding is that an isolated periodic orbit cannot occur in a three-reaction, trimolecular, mass-action system with bimolecular sources. In fact, we characterize all networks in this class that admit a periodic orbit; in every case, all nearby orbits are periodic too. Apart from the well-known Lotka and Ivanova reactions, we identify another network in this class that admits a center. This new network exhibits a vertical Andronov–Hopf bifurcation. Furthermore, we characterize all two-species, three-reaction, bimolecular-sourced networks that admit an Andronov–Hopf bifurcation with mass-action kinetics. These include two families of networks that admit a supercritical Andronov–Hopf bifurcation and hence a stable limit cycle. These networks necessarily have a target complex with a molecularity of at least four, and it turns out that there are exactly four such networks that are tetramolecular.  相似文献   

18.
In this paper, we derive some new results on the parametric stability of nonlinear systems. Explicitly, we derive a necessary and sufficient condition for a nonlinear system to be locally parametrically exponentially stable at an equilibrium point. We also derive a necessary condition for the nonlinear system to be locally parametrically asymptotically stable at an equilibrium point. Next, we derive some new results on the parametric stability of discrete-time nonlinear systems. As in the continuous case, we derive a necessary and sufficient condition for a discrete-time nonlinear system to be locally parametrically exponentially stable at an equilibrium point. We also derive a necessary condition for the discrete-time nonlinear system to be locally parametrically asymptotically stable at an equilibrium point. We illustrate our results with some classical examples from the bifurcation theory.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号