首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EPR, 13C NMR and TEM study of ultradisperse diamond (UDD) samples is reported. The compounds show a high concentration of paramagnetic centers (up to 1020 spin/g), which are due to structural defects (dangling C-C bonds) on the diamond cluster surface. The anomalous reduction in the spin-lattice relaxation time of 13C (from several hours in natural diamond to ∼150 ms in UDD clusters) is attributed to the interaction between the unpaired electrons of the paramagnetic centers and nuclear spins. 13C NMR line-width reflects the fact that the structure of the UDD surface is distorted in comparison to the ‘bulk’ diamond structure.  相似文献   

2.
We report on a nuclear magnetic resonance (NMR) study of ultrananocrystalline diamond (UNCD) materials produced by detonation technique. Analysis of the 13C and 1H NMR spectra, spin-spin and spin-lattice relaxation times in purified UNCD samples is presented. Our measurements show that UNCD particles consist of a diamond core that is partially covered by a sp 2-carbon fullerene-like shell. The uncovered part of outer diamond surface comprises a number of hydrocarbon groups that saturate the dangling bonds. Our findings are discussed along with recent calculations of the UNCD structure. Significant increase in the spin-lattice relaxation rate (in comparison with that of natural diamond), as well as stretched exponential character of the magnetization recovery, are attributed to the interaction of nuclear spins with paramagnetic centers which are likely fabrication-driven dangling bonds with unpaired electrons. We show that these centers are located mainly at the interface between the diamond core and shell.  相似文献   

3.
The diamond nucleation has been studied on scratched Si(100) both by surface analyses (XPS, AES, ELS) and microstructural probes (AFM, SEM). Two pathways for diamond formation and growth are detected: A seeding pathway occurs by direct growth from part of diamond seeds left by the mechanical pretreatment. Not all of these seeds however are prone to diamond growth as they can be either dissolved or carburized. A nucleation pathway occurs through a stepwise process including the formation of extrinsic (pretreatment) or intrinsic (in situ) nucleation sites, followed by formation of carbon-based precursors. It is believed that nucleation sites could be either grooves of scratching lines or protrusions produced by etching-redeposition. The size of these protrusions is not larger than 100 nm. On top of these protrusions as well as on the bare substrate, a thin layer of silicon carbide rapidly forms and DLC carbon likely. This complex process on top of protrusions may constitute carbon-based embryos for further diamond nucleation. Received 21 December 1998  相似文献   

4.
Optimization of the surface texture for silicon carbide sliding in water   总被引:7,自引:0,他引:7  
Surface texturing has been recognized as an effective means to improve the tribological performances of sliding surfaces. Usually, generation additional hydrodynamic pressure to increase the load carrying capacity is regarded as the most significant effect of surface texture. In the case of silicon carbide sliding against identical material in water, the experimental results indicate that surface texture is also helpful to improve the running-in progress to smooth the contact surfaces, showing another reason to result in low friction. Based on the consideration of enhancing the generation of hydrodynamic pressure and improving running-in progress, a surface texture pattern, which was combined with large (circle, 350 μm in diameter) and small (rectangular, 40 μm in length) dimples, was designed to maximize the texture effect on the load carrying capacity of SiC surfaces sliding in water. The friction coefficient of such textured surface was evaluated and compared with that of untextured and those only with large or small dimples only. The friction reduction mechanisms of the patterns with different dimples in size are discussed.  相似文献   

5.
This review provides an overview of recent advances that have been achieved in understanding the basic physics of friction and energy dissipation in molecularly thin adsorbed films and the associated impact on friction at microscopic and macroscopic length scales. Topics covered include a historical overview of the fundamental understanding of macroscopic friction, theoretical treatments of phononic and electronic energy dissipation mechanisms in thin films, and current experimental methods capable of probing such phenomena. Measurements performed on adsorbates sliding in unconfined geometries with the quartz crystal microbalance technique receive particular attention. The final sections review the experimental literature of how measurements of sliding friction in thin films reveal energy dissipation mechanisms and how the results can be linked to film-spreading behavior, lubrication, film phase transitions, superconductivity-dependent friction, and microelectromechanical systems applications. Materials systems reported on include adsorbed films comprised of helium, neon, argon, krypton, xenon, water, oxygen, nitrogen, carbon monoxide, ethane, ethanol, trifluoroethanol, methanol, cyclohexane, ethylene, pentanol, toluene, tricresylphosphate, t-butylphenyl phosphate, benzene, and iodobenzene. Substrates reported on include silver, gold, aluminum, copper, nickel, lead, silicon, graphite, graphene, fullerenes, C60, diamond, carbon, diamond-like carbon, and YBa2Cu3O7, and self-assembled monolayers consisting of tethered polymeric molecules.  相似文献   

6.
 提出一个用于电磁内爆过程数值模拟的准一维模型,对1 MJ电容器组电磁内爆优化方案进行了计算,并将计算结果与零维模型和一维模型的结果进行了比较。  相似文献   

7.
 利用二级轻气炮加载技术研究了碳水混合物的冲击压缩特性。研究发现:冲击压力p低于19.0 GPa时,石墨与水混合物冲击压缩特性明显不同于金刚石与水混合物的冲击压缩特性;p大于23 GPa后,它们的特性十分接近;当p为52.9 GPa时,石墨与水混合物表现出反常的冲击压缩特性,压力增加而体积出现膨胀,这与高压下碳与水发生化学反应产生气体相关。还对碳水混合物的相互作用势及混合法则的选取进行了讨论。  相似文献   

8.
We report a new diamond synthesis process in which cubic boron nitride single crystals are used as seeds, FesoNi20 alloy powder is used as catalyst/solvent and natural flake-like graphite is used as the carbon source. The samples are investigated using laser Raman spectra and x-ray diffraction (XRD). Morphology of the sample is observed by a scanning electron microscope (SEM). Based on the measurement results, we conclude that diamond single crystals have grown on the cBN crystal seeds under the conditions of high temperature 1230℃ and high pressure 4.8 GPa. This work provides an original method for synthesis of high quality hereto-semiconductor with cBN and diamond single crystals, and paves the way for future development.  相似文献   

9.
A soft, norm-conserving pseudopotential for carbon is presented and its performance tested by calculations on atomic states and on diamond: electronic energy levels of different atomic configurations, equilibrium lattice constant, bulk modulus, and the TA(X) frozen-phonon frequency are accurately reproduced. Convergence of the total energy of diamond with the size of the plane-wave basis set is compared for several frequently used pseudopotentials, and it is shown that calculations with the reported pseudopotential can be performed at considerably lower cost than with the other norm-conserving pseudopotentials, without loosing the accuracy of the latter in predicting structural and dynamical properties. The rapid convergence of the results with the plane-wave cutoff is comparable to the performance of the Vanderbilt's ultrasoft pseudopotentials. The transferability of the pseudopotential to other electronic configurations is discussed. Received 8 September 1999  相似文献   

10.
Natural fibres represent a readily available source of ecologically friendly and inexpensive reinforcement in composites with degradable thermoplastics, however chemical treatments of fibres are required to prepare feasible composites. It is desirable to characterize the surface wettability of fibres after chemical treatment as the polarity of cellulose-based fibres influences compatibility with a polymer matrix. Assessment of the surface wettability of natural fibres using conventional methods presents a challenge as the surfaces are morphologically and chemically heterogeneous, rough, and can be strongly wicking. In this work it is shown that under atmospheric conditions the adhesion force between an atomic force microscopy (AFM) tip and the fibre surface can estimate the water contact angle and surface wettability of the fibre. AFM adhesion force measurements are suitable for the more difficult surfaces of natural fibres and in addition allow for correlations between microstructural features and surface wettability characteristics.  相似文献   

11.
We propose a phenomenological model of boundary lubricated junctions consisting of a few layers of small molecules which describes the rheological properties of these sytems both in the static, frozen, and sliding, molten, states as well as the dynamical transition between them. Two dynamical regimes can be distinguished, according to the level of internal damping of the junction, which depends on its thickness and on the normal load. In the overdamped regime, under driving at constant velocity v through an external spring, the motion evolves continuously from “atomic stick-slip” to modulated sliding. Underdamped systems exhibit, under given external stress, a range of dynamic bistability where the sheared static state coexists with a steadily sliding one. The frictional dynamics under shear driving is analyzed in detail, it provides a complete account of the qualitative dynamical scenarios observed by Israelashvili et al., and yields semiquantitative agreement with experimental data. A few complementary experimental tests of the model are suggested. Received: 18 December 1997 / Received in final form and accepted: 26 March 1998  相似文献   

12.
Nitrogen is successfully doped in diamond by adding sodium azide (NaN3 ) as the source of nitrogen to the graphite and iron powders. The diamond crystals with high nitrogen concentration, 1000-2200ppm, which contain the same concentrations of nitrogen with natural diamond, have been synthesized by using the system of iron-carbon- additive NAN3. The nitrogen concentrations in diamond increase with the increasing content of NAN3. When the content of NaN3 is increased to 0.7-1.3 wt. %, the nitrogen concentration in the diamond almost remains in a nitrogen concentration range from 1250ppm to 2200ppm, which is the highest value and several times higher than that in the diamond synthesized by a conventional method without additive NaN3 under high pressure and high temperature (HPHT) conditions.  相似文献   

13.
房超  贾晓鹏  颜丙敏  陈宁  李亚东  陈良超  郭龙锁  马红安 《物理学报》2015,64(22):228101-228101
在压力为5.5–6.2 GPa, 温度为1280–1450 ℃的条件下, 利用温度梯度法详细考察了氮氢协同掺杂对100晶面生长宝石级金刚石的影响. 实验结果表明伴随合成腔体内氮、氢浓度的升高, 合成条件明显升高, 金刚石生长V形区间上移; 晶体的红外光谱中与氮相关的吸收峰急剧增强, 氮含量可达2000 ppm, 同时位于2850 cm-1和2920 cm-1对应于 sp3杂化 C–H 键的对称伸缩振动和反对称伸缩振动的红外特征峰逐渐增强, 表明晶体中既有高的氮含量, 同时又含有氢. 对晶体进行电镜扫描发现, 氮氢协同掺杂对晶体形貌影响明显, 出现拉长的{111}面, 且晶体表面上有三角形生长纹理. 拉曼测试表明, 晶体的峰位向高频偏移、半峰宽变大, 说明氮、氢杂质的进入对晶体内部产生了应力. 本文成功地以{100}晶面为生长面合成出高氮含氢宝石级金刚石单晶, 在探究氮氢共存环境下金刚石生长特性的同时, 也可为理解天然金刚石的形成机理提供帮助.  相似文献   

14.
Copper nanoparticle electrodeposition and consolidation processes were studied on boron doped diamond (BDD) electrode submitted to hydrogen and oxygen plasma treatments. The modified BDD films were applied as electrodes for nitrate electroreduction. The results showed that both treatments have a strong influence on the copper deposition and dissolution processes. For BDD treated with hydrogen plasma the copper electrodeposit was homogeneous with high particle density. This behavior was attributed to the BDD surface hydrogenation that improved its conductivity. On the other hand, the treatment with oxygen plasma was important for the copper nanoparticle consolidation on BDD surface, confirmed by the result's reproducibility for nitrate reduction. This performance may be associated with the formation of oxygen groups that can act as anchor points for Cu-clusters, enhancing the interfacial adhesion between diamond and the metal coating. The best electrochemical nitrate reduction response was obtained in acid media, where occurred the separation of the nitrate reduction process and the water reduction reaction.  相似文献   

15.
Classical molecular dynamics (MD) simulations are conducted to examine the atomic-scale friction behavior of an infinite flat-flat contact between copper(0 0 1) and diamond(1 1 1) surfaces. Two types of diamond surface, namely H-free and hydrogenated, are constructed and on each of them the copper counterface is brought to slide along the [1 1 −2] and [1 −1 0] crystallographic directions with a variety of loads. The simulation results demonstrate that the hydrogen atoms chemisorbed to the diamond surface can to large extent eliminate the directional dependency of its friction behavior with copper. Under pressures less than 30 GPa, the sliding between copper and hydrogenated is wearless. In this period, the shear stress of them just slightly increases to 0.6 GPa. Between 30 GPa and 32 GPa, copper atoms near the interface begin to be worn and incorporate into the diamond substrate and this causes a sharp shift from 0.6 GPa to 2.7 GPa in their shear stress. In contrast, the sliding process between copper and H-free diamond is always wearless even under pressure beyond 40 GPa. The H-free [1 −1 0] model exhibits much higher shear stress than H-free [1 1 −2] under pressures less than 35 GPa. Beyond 35 GPa, they present nearly consistent shear stress evolution. Moreover, the simulations for hydrogenated diamond models suggest that their friction behavior is independent on sliding velocity only under wearless sliding regime.  相似文献   

16.
In this paper,we report on the influence of annealing treatment on as-grown Ib-type diamond crystal under high pressure and high temperature in a china-type cubic anvil high-pressure apparatus.Experiments are carried out at a pressure of 7.0 GPa and temperatures ranging from 1700 C to 1900 C for 1 h.Annealing treatment of the diamond crystal shows that the aggregation rate constant of nitrogen atoms in the as-grown Ib-type diamond crystal strongly depends on diamond morphology and annealing temperature.The aggregation rate constant of nitrogen remarkably increases with the increase of annealing temperature and its value in octahedral diamond is much higher than that in cubic diamond annealed at the same temperature.The colour of octahedral diamond crystal is obviously reduced from yellow to nearly colorless after annealing treatment for 1 h at 1900 C,which is induced by nitrogen aggregation in a diamond lattice.The extent of nitrogen aggregation in an annealed diamond could approach approximately 98% indicated from the infrared absorption spectra.The micro-Raman spectrum reveals that the annealing treatment can improve the crystalline quality of Ib-type diamond characterized by a half width at full maximum at first order Raman peak,and therefore the annealed diamond crystals exhibit nearly the same properties as the natural IaA-type diamond stones of high quality in the Raman measurements.  相似文献   

17.
天然金刚石形成透明硼皮金刚石的研究   总被引:15,自引:1,他引:14       下载免费PDF全文
 本文采用离子注入法,对天然金刚石表面进行少量渗硼,形成透明硼皮金刚石。经NP-1型X光电子能谱仪(XPS)表面测试,证明注入硼后的金刚石表面硼原子和碳原子形成了结合键。又经热失重分析(TGA)表明,用B2O3和硼作离子源进行注入,均能使金刚石的抗氧化温度得到提高,但用硼注入得到的“硼皮”金刚石抗氧化性更好些。用四种不同能量进行注硼时,都能使金刚石的抗氧化性得到几乎相同程度的提高,与注入的深度无关。  相似文献   

18.
Xu Kang 《Applied Surface Science》2007,253(22):8830-8834
Polypropylene bio-mimic self-cleaning surfaces with porous micro-nano-binary morphology structures were prepared by a simple casting method. The influence of the cooling process and solvent composition on water contact angle, sliding angles and self-cleaning properties has been investigated. Detailed SEM morphology studies revealed that the polymer used in this work is commercial-grade granular low-density polyethylene (LDPE) forms petal-like crystalline, which are of micrometer scale in length and nanometer scale in thickness. The nano-crystallines on the surface represent a porous three-dimensional micro-nano-binary structure. It was found that a compromise to the film porosity and crystal nano structure is essential for achieving a satisfied self-cleaning surface. Under optimum condition, a water contact angle of 152.2°, and a sliding angle of 1.7° can be obtained using this simple method.  相似文献   

19.
金刚石中氦、氢含量的变化及在金刚石生长中的意义   总被引:1,自引:0,他引:1  
天然金刚石自中心至边缘的显微傅里叶变换红外光谱研究表明:氮和氢在金刚石中的分布是不均匀的,这说明金刚石在整个生长过程中的物质环境是有差异的;中心至边缘的含氮总量、C-H键含量的总体降低趋势表明金刚石的生长过程是一个氮、氢的消耗过程,而中部的升高变化说明金刚石生长环境中存在氮、氢的补充,但氮补充得比氢更早一些.据此,可以将金刚石的生长过程划分为早期成核与长大、中期长大及末期长大三个阶段,其中早期和末期是氮和氢的消耗阶段,中期需要进行氮和氢的补充,且氮应该更早补充.氢对金刚石的生长是有利的,氢和氮不是以氮氢化合物的形式存在于金刚石生长的物质环境中,这暗示着在高温高压合成金刚石中欲引入氢,应当避免氮氢化合物的形成.  相似文献   

20.
Recently, Yan et al. reported a theoretical approach to overcome the n-type doping problem of diamond by passivating the B acceptor and the reduction of ionization energy of dopants. Using the proposed approach, we have systemically investigated the effect of excess H atoms on the electronic properties of a passivated system [diamond doped with (B+H) complex] based on the variation of Fermi level from first-principle calculations. The results show that the excess H atom is responsible for n-type behavior when all valence electrons of substitutional B atom participate in the hybridization between substitutional B and H atoms. On the contrary, when part of valence electrons of the substitutional B atom participates in the hybridization, H atoms make the passivated system show p-type or insulator behavior. Further study indicates that the excess H atoms are more apt to make the passivated system show p-type rather than n-type behavior under the same conditions. It leads to a much more comprehensive understanding of the interaction between the excess H atoms and the passivated system compared with that of Yan et al. The results may be useful to provide guidance for experimental work on obtaining n-type diamond in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号