首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photophysical investigation of different para-substituted tetraphenylporphyrins (TP), viz., meso-tetra(4′-hydroxyphenyl)-21H-23H-porphyrin(1),meso-tetrakis(4′-hex-5-enyloxyphenyl)-21H-23H-porphyrin(2), meso-tetrakis(4′-oct-7-enyloxyphenyl)-21H-23H-porphyrin(3) and meso-tetrakis(4′-undecyloxyphenyl)-21H-23H-porphyrin (4) revealed that except for quantum yield (φ) the para-substitution has little effect on any other photophysical properties like lifetime, excitation, emission wavelength, etc. The host-guest type interactions of these tetraarylporphyrins (TP 1-4), with [60]-fullerene (F) have been studied with 1H NMR and fluorescence spectrometric techniques in carbon tetrachloride medium. Fluorescence studies revealed that the Q band of the TPs was sufficiently quenched upon addition of F. All the fullerene/porphyrin systems were found to produce stable complexes with 1:1 stoichiometry. Binding constants (K) of all the fullerene/porphyrin complexes have been determined by fluorescence quenching method. The association constant values for 1/F have been determined from plots of the Stern-Volmer equation (103.713×104) and the Benesi-Hildebrand equation (110.440×104). It has been observed that the insertion of long chain oxo-alkenyl/alkyl group in the para position of TPs in 2, 3 and 4 diminished the K values for F by two, four and even ten times with respect to that of 1. The observed trend in variation of the binding constants was supported by a gradual variation in the shift of 1H NMR signal when measurements were carried out in CDCl3.  相似文献   

2.
The effect of a spiral spin structure on superconducting (SC) pairing in a three-band Hubbard model related to Sr2RuO4 is analyzed in the mean-field approximation. Such a structure with incommensurate vector Q=2π (1/3, 1/3) is the simplest one that removes the nesting instability of α and β bands. It is assumed that there is an intralayer pairing interaction between two types of neighbor sites, those with attraction in a singlet channel and with attraction in both two-singlet and triplet channels. In both cases, a mixed singlet-triplet SC order is observed in the γ band: a d-wave singlet order is accompanied by the formation of p-wave triplet pairs (k,-k-Q)? and (k,?k+Q)? with large total momenta ?Q and the spin projections ±1 onto an axis perpendicular to the spin rotation plane of the spiral spin structure. Both the SC and normal states are states with broken time-reversal symmetry. In contradiction to the experiment, the models give different scales of T c for the γ band and for α and β bands. This fact shows that the models with intralayer interactions or with the spin structure assumed are insufficient.  相似文献   

3.
The quasi-line low-temperature (4.2 K) fluorescence excitation spectra of two porphyrins, meso-tetraazaporphin and meso-tetrapropylporphin introduced into an n-octane matrix are measured in the range of the S 0S 2 electronic transition. A characteristic feature of these spectra is that a conglomerate of quasi-lines—a structured complex band—is observed instead of one 0–0 quasi-line of the S 0S 2 transition. In this band, the intensity distributions for the two main types of impurity centers considerably differ from each other. The occurrence of such conglomerates is interpreted as a result of nonadiabatic electronic-vibrational interactions between vibronic S 2 and S 1 states (the complex vibronic analogue of the Fermi resonance). The frequencies and intensities of individual transitions determined from the deconvolution of complex conglomerates are used as the initial data for solving the inverse spectroscopic problem: the determination of the unperturbed electronic and vibrational levels of states involved in the resonance and the electronic-vibrational interaction matrix elements between them. This problem is solved with a method developed previously. The energy intervals between the S 2 and S 1 electronic levels of the two main types of impurity centers formed by molecules of a given porphyrin in the crystal matrix are found to significantly differ from each other (~100 cm?1). At the same time, the energies of the unperturbed vibrational states of the S 1 electronic level partcipating in the resonance are very close to each other for these two types of impurity centers.  相似文献   

4.
The dissociation CO2(X1Σ) + M → CO(X1Σ) + O(3P) + M and recombination CO(X1Σ) + O(3P) + M → CO2(X1Σ) + M processes are considered with the spin—orbit coupling taken into account in the ground and several excited states of the CO2 molecule. Because of the specific features of mutual position of potential energy surfaces of the CO2 molecule in the ground and several excited states and the large values of spin—orbit interaction matrix elements, which causes the quantum nonadiabatic transition of the molecule from one state to another, these processes become effectively spin-allowed and the rate constants for the nonadiabatic reactions have large values. The proposed dissociation and recombination mechanisms include reactions involving singlet—triplet crossings.  相似文献   

5.
A molecular simulation of the solvent effect on radiative rate constant k r of singlet oxygen is carried out. This study included a search for the most probable conformations of the complexes of molecules of singlet oxygen and ten solvents and calculation of dipole moments M of transitions a1Δ g –b1Σ g + (M a–b ) and a1Δ g X3Σ g - (M a–X ) of the oxygen molecule for them. Averaging of M a–b by conformations, taking into account the probability of their formation for complexes without atoms with a large atomic number (Cl, S), yields values that, as a rule, correlate well with the behavior of k r in the experiment. Taking into account the possibility of decreasing the distance (compared to equilibrium) between molecules in a collision complex at room temperature made it possible to achieve satisfactory agreement of the calculated and experimental data also for complexes with CCl4, C2Cl4, and CS2. The obtained data indicate that a number of factors affect k r . The correlation of k r with molecular polarizability in a number of cases is due, on the one hand, to its effect on the strength of dispersion interactions in the complex and, on the other hand, to the fact that it to some extent reflects the position of the upper filled orbitals of the solvent molecule. Both factors affect the degree of mixing of the π orbitals of the singlet oxygen molecule with the orbitals of the solvent molecule, which, as was found earlier, facilitates the activation of the a1Δ g –b1Σ g + transition and the borrowing of its intensity by the a1Δ g X3Σ g - transition.  相似文献   

6.
The nonradiative S-T intersystem crossing S 1(ππ*) ? T 1(ππ*) in dibenzofuran (DB(O)) molecules has been theoretically investigated within the model of vibronically induced spin-orbit (VISO) coupling of electronic states, where the vibronic perturbation takes into account all out-of-plane vibrational modes of a molecule. It is established that the S-T intersystem crossing S 1(1 A 1) ? T 1(3 B 2) involves also the intermediate (T m )T 2(3 A 1) and T 3(3 B 2) triplet states. The calculated rate constant K ST = (4.5–4.7) × 107s?1 of the nonradiative transition is in agreement with the known experimental data. The manifestation of approximate (belonging to the D 2h group) symmetry of singlet and triplet molecular states in VISO couplings has been studied. An effect of the heavy (oxygen) atom of a DB(O) molecule on K ST is established.  相似文献   

7.
Methods of populating the lowest excited triplet state T 1 of pyrene implanted into polystyrene (PS) or photoconductive polymer materials polymethylphenylsilane (PMPS), poly-N-epoxypropylcarbazole (PEPC), and poly-N-vinylcarbazole (PVK) are studied. Photoluminescence was excited in the first electron transition band of pyrene and the above photoconductive polymers. It is found that, at concentrations of 0.05–0.50 mol l?1, pyrene is effective in quenching the fluorescence of PMPS, PEPC, and PVK but has only a slight effect on the photoemission efficiency of geminate electron-hole pairs. As a result, the phosphorescence of pyrene in photoconductive polymers is excited both by the intersystem crossing from the first excited singlet state (S 1 ? T 1) and by the capture of triplet excitons created in the recombination of charge pairs. In addition, in PEPC and PVK, the phosphorescence of pyrene is excited by recombination of a captured hole with an electron. For this reason, the ratio of the quantum yields of phosphorescence and fluorescence of pyrene in photoconductive polymers is much larger than that in PS, wherein the T 1 state of pyrene is populated by intersystem crossing S 1 ? T 1 only.  相似文献   

8.
The probability of the nonradiative S-T intersystem crossing in dibenzo-p-dioxin is theoretically studied using a model for the vibronically induced spin-orbit coupling between electronic states and taking into account all out-of-plane vibrational modes. Several symmetry variants for the lowest S 1(ππ*) singlet state are considered. In the case of g symmetry of this state, a provision is made for the possibility of its vibronic coupling with the nearest dipole-active singlet 1 B 2u ππ* state. The rate constants K ST of the S 1 ? T(ππ*) transitions to the T 1(3 B 3g ) state are estimated taking into account several intermediate triplet T m (ππ*) states of g and u symmetry. For different symmetry types of the S 1 state, the effect of K ST on the fluorescence quantum yield ?fl is discussed. The 1 B 3g symmetry state is found to be the lowest S 1 state. It is found that the main contribution to K ST is made by the S 1(1 B 3g ) ? T 4(3 A g ) transition.  相似文献   

9.
A series of novel state-vector functions (SVFs), which is the general solution of the Schrödinger equation for a photon, are constructed. Each set of these functions consists of a triplet of eigen-SVFs: The triplet can be broken down into a pair of nonzero l-order functions and a single zero-order function. The photons, described with a triplet of eigen-SVFs, possess all the quantum characteristics of a photon: In addition to common attributes like energy E = ? ω , and momentum p z = ? κ , they also exhibit different angular momenta (AM) L z+ = l?, L z? = l?, and L z0 = 0, where l?1. In other words, in addition to usual eigenvalues L z±= ±?, there are unusual nonzero l-order eigenvalues L z± = ±l? and a zero-order eigenvalue L z0 = 0 for AM of a photon. By a series of SVFs, the pattern from nonzero l-order and zero-order Laguerre-Gaussian modes of a laser beam is explained well from a quantum mechanical point of view.  相似文献   

10.
The oxygen quenching rate constants k T O2 of the triplet state T 1 of vapors of polycyclic aromatic hydrocarbons (PAHs) with strongly different oxidation potentials 0.44 eV < E OX < 1.61 eV and energies of the triplet levels 14800 cm?1 < E T < 24500 cm?1 (anthracene, 2-aminoanthracene, 9-nitroanthracene, chrysene, phenanthrene, fluoranthene, and carbazole) are estimated from the measured dependences of the decay rates and intensities of delayed fluorescence on the oxygen pressure P O2. It is found that the rate constants k T O2 vary from 4 × 103 (9-nitroanthracene) to 4 × 105 s?1 Torr?1 (2-aminoanthracene) and increase with decreasing oxidation potentials E OX of PAHs. The rate constants k T O2 for vapors and solutions are compared. The dependences of k T O2 on the free energy of two intermolecular processes, namely, triplet energy transfer to oxygen and electron transfer, are analyzed. It is shown that the rate constants k T O2 increase with decreasing electron transfer free energy, which proves that, along with energy transfer, charge-transfer interactions contribute to the quenching of the triplet states of PAH vapors.  相似文献   

11.
The quantum yields and lifetimes of photosensitized luminescence of the 1Δ g state of singlet oxygen in an aquatic media with a controlled concentration of dielectric anisotropy centers (polyethylene glycol) have been measured using the methods of laser fluorometry. It is established that the quantum yield and the rate constant (k r ) of the a 1Δ g X 3Σ g - luminescence of 1O2 increase as the polymer concentration increases. The effect is analyzed within a general approach involving a relationship between kr and dielectric properties of the medium and is explained by the increased density of photon states and the local field factor in the space around O2(а 1Δ g ).  相似文献   

12.
We study a frustrated spin-S staggered-dimer Heisenberg model on square lattice by using the bond-operator representation for quantum spins, and investigate the emergence of classical magnetic order from the quantum mechanical (staggered-dimer singlet) ground state for increasing S. Using triplon analysis, we find the critical couplings for this quantum phase transition to scale as 1 /S(S + 1). We extend the triplon analysis to include the effect of quintet dimer-states, which proves to be essential for establishing the classical order (Néel or collinear in the present study) for large S, both in the purely Heisenberg case and also in the model with single-ion anisotropy.  相似文献   

13.
The circular dichroism (CD) spectra of chlorin e6 and its complexes with ZnS:Mn/ZnS and CdSe/ZnS quantum dots (QDs) in aqueous solutions with different pH, in methanol, and in dimethyl sulfoxide (DMSO) have been experimentally investigated. The changes in the CD spectra of free chlorin e6 caused by its complexing with semiconductor QDs are analyzed. The application of CD spectroscopy made it possible to record for the first time the CD spectrum of luminescent dimer of chlorin e6 and reveal a nonluminescent aggregate of chlorin e6 (interpreted preliminary as a “tetramer”), the anisotropy factor of which exceeds that of its monomer by a factor of 40. An analysis of the experimental data shows that chlorin e6 in a complex with QDs can be either in the monomeric form or in the form of a nonluminescent “tetramer.” The interaction with a relatively low-stable luminescent dimer of chlorin e6 with QDs leads to its partial monomerization and formation of complexes where chlorin e6 is in the monomeric form.  相似文献   

14.
A cluster problem is analyzed as an example demonstrating that the observed three-mode behavior of spin-triplet excitations in YbB12 can be described by the asymmetric Anderson model with insulating singlet ground state. In the case of an infinite system, it is argued that the behavior of the f subsystem can be analyzed by using an effective Hamiltonian ? J with direct antiferromagnetic f-f exchange interaction. The spin excitation spectrum is shown to have a minimum at the antiferromagnetic vector, as observed experimentally. A distinctive feature of the analysis is the use of singlet and triplet basis operators.  相似文献   

15.
The energy of a large bipolaron is calculated for various spacings between the centers of the polarization potential wells of the two polarons with allowance made for electron correlations (i.e., the explicit dependence of the wave function of the system on the distance between the electrons) and for permutation symmetry of the two-electron wave function. The lowest singlet and triplet 23S states of the bipolaron are considered. The singlet polaron is shown to be stable over the range of ionic-bond parameter values η≤ηm≈0.143 (η=?/?0, where ? and ?0 are the high-frequency and static dielectric constants, respectively). There is a single energy minimum, corresponding to the single-center bipolaron configuration (similar to a helium atom). The binding energy of the bipolaron for η → 0 is Jbp=?0.136512e4m*/?2? 2 (e and m* are the charge and effective mass of a band electron), or 25.8% of the double polaron energy. The triplet bipolaron state (similar to an orthohelium atom) is energetically unfavorable in the system at hand. The single-center configuration of the triplet bipolaron corresponds to a sharp maximum in the distance dependence of the total energy Jbp(R); therefore, a transition of the bipolaron to the orthostate (e.g., due to exchange scattering) will lead to decay of the bound two-particle state. The exchange interaction between polarons is antiferromagnetic (AFM) in character. If the conditions for the Wigner crystallization of a polaron gas are met, the AFM exchange interaction between polarons can lead to AFM ordering in the system of polarons.  相似文献   

16.
High oxygen permeable [poly(TMSP)] nanofibers incorporating porphyrin macrocycle as luminescence indicators were prepared by electrospinning technique. The porphyrins involves were modified by i) introducing phenylacetylide substituents on the para position of the phenyl moieties and ii) varying the metal centers [Pt(II) or Pd(II)] of the meso-tetrakisphenylporphyrins. A set of nanofibers; (Pt-TPP)NF, (Pd-TPP)NF, (Pt-TPA)NF and (Pd-TPA)NF were obtained to study their structure-activity relationship toward oxygen. The lifetime-based technique was privileged to take advantage of their long-lived phosphorescent properties. A two-fold enhancement was observed for (Pt-TPA)NF and (Pd-TPA)NF compared to (Pt-TPP)NF and (Pd-TPP)NF demonstrating the positive effect of the phenylacetylide moieties on the lifetime. Also, Silver nanoparticles were included in nanofibers to investigate their influence on lifetime-based oxygen sensitivity, showing that the presence of AgNPs only affects (Pd-TPA)NF.  相似文献   

17.
We present an exact diagrammatic approach for the problem of dimer-dimer scattering in 3D for dimers being a resonant bound state of two fermions in a spin singlet state, with corresponding scattering length a. We recover exactly the previously known result a B = 0.60a, where a B is the dimer-dimer scattering length. A detailed discussion of how one can “sum all the diagrams” in this case is presented. Applications to the study of 4-particle bound states of various complexes in 2D are briefly presented.  相似文献   

18.
We investigate quantum echo control and Bell state swapping for two atomic qubits (TAQs) coupling to two-mode vacuum cavity field (TMVCF) environment via two-photon resonance. We discuss the effect of initial entanglement factor ?? and relative coupling strength R=g1/g2 on quantum state fidelity of TAQs, and analyze the relation between three kinds of quantum entanglement(C(ρa),C(ρf),S(ρa)) and quantum state fidelity, then reveal physical essence of quantum echo of TAQs. It is shown that in the identical coupling case R=1, periodic quantum echo of TAQs with π cycle is always produced, and the value of fidelity can be controlled by choosing appropriate ?? and atom-filed interaction time. In the non-identical coupling case R≠1, quantum echoes with periods of π, 2π and 4π can be formed respectively by adjusting R. The characteristics of quantum echo results from the non-Markovianity of TMVCF environment, and then we propose Bell state swapping scheme between TAQs and two-mode cavity field.  相似文献   

19.
M centers in alkali halides consist of twoF centers combined along one of the 〈110〉 directions of the crystal. In addition to the singlet ground state a metastable triplet state has been observed. The paper deals with the absorption and excitation spectra, the kinetics of the production and the spontaneous and the induced decay of tripletM centers in KCl.  相似文献   

20.
We discuss the parity-violating left–right asymmetries (LRAs) in Möller scattering at the International Linear Collider (ILC) induced by doubly charged Higgs bosons in models with SU(2) L triplet and singlet scalar bosons, which couple to the left- and right-handed charged leptons, respectively. These bosons are important in scenarios for the generation of the neutrino mass. We demonstrate that the contributions to the LRAs from the triplet and singlet bosons are opposite to each other. In particular, we show that the doubly charged Higgs boson from the singlet scalar can be tested at the ILC by using the resonance effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号