首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the Zn(2+) cation in Zn·Cys(4), Zn·Cys(3)His, Zn·Cys(2)His(2), and Zn(2)Cys(6) cores of zinc finger (Zf) proteins typically plays a structural role, the Zn-bound thiolates in some Zf cores are reactive. Such labile Zf cores can serve as drug targets for retroviral or cancer therapies. Previous studies showed that the reactivity of a Zn-bound thiolate toward electrophiles is significantly reduced if it forms S---NH hydrogen bonds with the backbone amide. However, we found several well-known inactive Zf cores containing Cys ligands with no H-bonding interactions. Here, we show that H bonds from the peptide backbone or bonds from a second Zn cation to Zn-bound S atoms suppress the reactivity not only of these S atoms, but also of Zn-bound S* atoms with no interactions. Indeed, two or more indirect NH---S hydrogen bonds raise the free energy barrier for methylation of a Zn-bound S* in a Cys(4) core more than a direct NH---S* hydrogen bond. These findings help to elucidate why several well-known Zf cores have Cys ligands with no H bonds, but are unreactive. They also help to provide guidelines for distinguishing labile Cys-rich Zn sites from structural ones, which in turn help to identify novel potential Zf drug targets.  相似文献   

2.
Zinc-thiolate complexes play a major structural and functional role in the living cell. Their stability is directly related to the thiolate reactivity toward reactive oxygen species naturally present in the cell. Oxidation of some zinc-thiolate complexes has a functional role, as is the case of zinc finger redox switches. Herein, we report a theoretical investigation on the oxidation of thiolate by hydrogen peroxide in zinc finger cores of CCCC, CCHC, and CCHH kinds containing either cysteine or histidine residues. In the case of the CCCC core, the calculated energy barrier for the oxidation to sulfenate of the complexed thiolate was found to be 16.0 kcal mol(-1), which is 2 kcal mol(-1) higher than that for the free thiolate. The energy barrier increases to 19.3 and 22.2 kcal mol(-1) for the monoprotonated and diprotonated CCCC cores, respectively. Substitution of cysteine by histidine also induces an increase in the magnitude of the reaction energy barrier: It becomes 20.0 and 20.9 kcal mol(-1) for the CCCH and CCHH cores, respectively. It is concluded that the energy barrier for the oxidation of zinc fingers is strictly dependent on the type of ligands coordinated to zinc and on the protonation state of the complex. These changes in the thiolate reactivity can be explained by the lowering of the nucleophilicity of complexed sulfur and by the internal reorganization of the complex (changes in the metal-ligand distances) upon oxidation. The next reaction steps subsequent to sulfenate formation are also considered. The oxidized thiolate (sulfenate) is predicted to dissociate very fast: For all complexes, the calculated dissociation energy barrier is lower than 3 kcal mol(-1). It is also shown that the dissociated sulfenic acid can interact with a free thiolate to form a sulfur-sulfur (SS) bridge in a reaction that is predicted to be quasi-diffusion limited. The interesting biological consequences of the modulation of thiolate reactivity by the chemical composition of the zinc finger cores are discussed.  相似文献   

3.
The S3Zn-SR coordination of thiolate-alkylating enzymes such as the Ada DNA repair protein was reproduced in tris(thioimidazolyl)borate-zinc-thiolate complexes Tti(R)Zn-SR'. Four different Tti(R) ligands and nine different thiolates were employed, yielding a total of 12 new complexes. In addition, one Tti(R)Zn-SH complex and two thiolate-bridged [Tti(R)-SEt-Tti(R)]+ complexes were obtained. A selection of six thiolate complexes was converted with methyl iodide to the corresponding methyl thioethers and Tti(R)Zn-I. According to a kinetic analysis these reactions are second-order processes, which implies that the alkylations are likely to occur at the zinc-bound thiolates. They are much faster than the alkylations of zinc thiolates with N3 or N2S tripod ligands. The most reactive thiolate, Tti(Xyl)Zn-SEt, reacts slowly with trimethyl phosphate in a nonpolar medium at room temperature, yielding methyl-ethyl-thioether and Tti(Xyl)Zn-OPO(OMe)2 which can be converted back to the thiolate complex with NaSEt. This is the closest reproduction of the Ada repair process so far.  相似文献   

4.
Zinc fingers are ubiquitous small protein domains which have a Zn(Cys)(4-x)(His)(x) site. They possess great diversity in their structure and amino acid composition. Using a family of six peptides, it was possible to assess the influence of hydrophobic amino acids on the metal-peptide affinities and on the rates of metal association and dissociation. A model of a treble-clef zinc finger, a model of the zinc finger site of a redox-switch protein, and four variants of the classical ββα zinc finger were used. They differ in their coordination set, their sequence length, and their hydrophobic amino acid content. The speciation, metal binding constants, and structure of these peptides have been investigated as a function of pH. The zinc binding constants of peptides, which adopt a well-defined structure, were found to be around 10(15) at pH 7.0. The rates of zinc exchange between EDTA and the peptides were also assessed. We evidenced that the packing of hydrophobic amino acids into a well-defined hydrophobic core can have a drastic influence on both the binding constant and the kinetics of metal exchange. Notably, well-packed hydrophobic amino acids can increase the stability constant by 4 orders of magnitude. The half-life of zinc exchange was also seen to vary significantly depending on the sequence of the zinc finger. The possible causes for this behavior are discussed. This work will help in understanding the dynamics of zinc exchange in zinc-containing proteins.  相似文献   

5.
Zinc finger domains consist of sequences of amino acids containing cysteine and histidine residues tetrahedrally coordinated to a zinc ion. The role of zinc in a DNA binding finger was considered purely structural due to the absence of redox chemistry in zinc. However, whether other metals e.g. Co(II) or Cd(II) can substitute Zn(II) is not settled. For an answer the detailed interaction of Co(II) and Cd(II) with cysteine methylester and histidine methylester has been investigated as a model for the zinc core in zinc fingers. The study was extended to different temperatures to evaluate the thermodynamic parameters associated with these interactions. The results suggest that zinc has a unique role.  相似文献   

6.
A single hydrogen bond between an amide N-H and a thiolate sulfur in model complexes designed to mimic the binding site of zinc thiolate proteins, is shown to reduce the reactivity of the thiolate toward electrophiles by up to 2 orders of magnitude. In addition a single such bond is also sufficient to achieve nearly 100% regiospecificity of reaction between a strong, and hence inherently indiscriminate, alkylating agent like trimethyl oxonium tetrafluoroborate and a single sulfur in a dithiolate construct. The importance of these results in understanding how two systems such as the zinc fingers of the GATA family and the Escherichia coli DNA repair protein Ada which share the same pseudotetrahedral structure and tetrascysteinyl ligation around the zinc can fulfill such widely divergent (structural vs reactive) roles and how specificity of reaction in multithiolate-containing systems can be achieved is discussed.  相似文献   

7.
8.
It is shown in model complexes designed to mimic the binding site of zinc-thiolate proteins that a single hydrogen bond between an amide N-H and a Zn-coordinated thiolate reduces its reactivity toward electrophiles by up to 2 orders of magnitude. In addition, we show that a single N-H...S hydrogen bond is sufficient to achieve near 100% regiospecificity of reaction between a strong, and hence inherently indiscriminate, alkylating agent like trimethyloxonium tetraflouroborate and a single sulfur in a dithiolate construct. The importance of these results in understanding how systems such as the zinc fingers of the GATA family and the E. coli DNA repair protein Ada, which share the same pseudotetrahedral structure and tetracysteinyl ligation around the zinc, can fulfill such widely divergent (structural vs reactive) roles and how specificity of reaction in such multi-thiolate containing systems can be achieved is discussed.  相似文献   

9.
Zinc finger proteins utilize zinc for structural purposes: zinc binds to a combination of cysteine and histidine ligands in a tetrahedral coordination geometry facilitating protein folding and function. While much is known about the classical zinc finger proteins, which utilize a Cys(2)His(2) ligand set to coordinate zinc and fold into an anti-parallel beta sheet/alpha helical fold, there are thirteen other families of 'non-classical' zinc finger proteins for which relationships between metal coordination and protein structure/function are less defined. This 'Perspective' article focuses on two classes of these non-classical zinc finger proteins: Cys(3)His type zinc finger proteins and Cys(2)His(2)Cys type zinc finger proteins. These proteins bind zinc in a tetrahedral geometry, like the classical zinc finger proteins, yet they adopt completely different folds and target different oligonucleotides. Our current understanding of the relationships between ligand set, metal ion, fold and function for these non-classical zinc fingers is discussed.  相似文献   

10.
We, theoretically, investigate the effect of ions on the packing and ejection dynamics of flexible and semiflexible polymers from spherical viral capsids. We find that when the polymer charge is less screened, or the Debye length increases (corresponding to a buffer with low concentration of a monovalent salt, such as Na(+)), the packing becomes more difficult and it may stop midway. Ejection, instead, proceeds more easily if the electrostatic screening is small. On the other hand, more screening (corresponding, for example, to the addition of divalent ions such as Mg(2+)) results in easier packing and slower ejection. We interpret this as resulting from electrostatic forces among the various polymer sections, which can be tuned with the type of salt present in the solution. We also discuss how the DNA structure inside the capsid changes due to screened electrostatic interactions.  相似文献   

11.
The reactivity of a series of Zn(Cys)(4) zinc finger model peptides towards H(2)O(2) and O(2) has been investigated. The oxidation products were identified by HPLC and ESI-MS analysis. At pH<7.5, the zinc complexes and the free peptides are oxidised to bis-disulfide-containing peptides. Above pH 7.5, the oxidation of the zinc complexes by H(2)O(2) also yields sulfinate- and sulfonate-containing overoxidised peptides. At pH 7.0, monitoring of the reactions between the zinc complexes and H(2)O(2) by HPLC revealed the sequential formation of two disulfides. Several techniques for the determination of the rate constant for the first oxidation step corresponding to the attack of H(2)O(2) by the Zn(Cys)(4) site have been compared. This rate constant can be reliably determined by monitoring the oxidation by HPLC, fluorescence, circular dichroism or absorption spectroscopy in the presence of excess ethyleneglycol bis(2-aminoethyl ether)tetraacetic acid. In contrast, monitoring of the release of zinc with 4-(2-pyridylazo)resorcinol or of the thiol content with 5,5'-dithiobis(2-nitrobenzoate) did not yield reliable values of this rate constant for the case in which the formation of the second disulfide is slower than the formation of the first. The kinetic measurements clearly evidence a protective effect of zinc on the oxidation of the cysteines by both H(2)O(2) and O(2), which points to the fact that zinc binding diminishes the nucleophilicity of the thiolates. In addition, the reaction between the zinc finger and H(2)O(2) is too slow to consider zinc fingers as potential sensors for H(2)O(2) in cells.  相似文献   

12.
13.
14.
Aerobic organisms must rely on abundant intracellular thiols to reductively protect various vital functional units, especially ubiquitous zinc(II) thiolate sites of proteins, from deleterious oxidations resulting from oxidizing environments. Disclosed here is the first well‐defined model study for reactions between zinc(II) thiolate complexes and copper(II) complexes. Among all the studied ligands of copper(II), diethyldithiocarbamate (DTC) displays a unique redox‐tuning ability that enables copper(II) to resist the reduction by thiols while retaining its ability to oxidize zinc(II) thiolates to form disulfides. This work proves for the first time that it is possible to develop oxidants to discriminate between thiols and zinc(II) thiolates, alluding to a new chemical principle for how oxidants, especially universal anticancer Cu(DTC)2, might circumvent the intracellular reductive defense around certain zinc(II) thiolate sites of proteins to kill malignant cells.  相似文献   

15.
We have developed two bacterial one-hybrid systems for interrogating and selecting zinc finger-DNA interactions. Our systems utilize two plasmids: a zinc finger-plasmid containing the gene for the zinc finger fused to a fragment of the alpha subunit of RNA polymerase and a reporter plasmid where the zinc finger-binding site is located upstream of a reporter gene-either the gene encoding the green fluorescent protein (GFP) or chloramphenicol acetyltransferase (CAT). Binding of the zinc finger domain to the target binding site results in a 10-fold increase in chloramphenicol resistance with the CAT reporter and an 8- to 22-fold increase in total cell fluorescence with the GFP reporter. The CAT reporter allows for sequence specific zinc fingers to be isolated in a single selection step whereas the GFP reporter enables quantitative evaluation of libraries using flow cytometry and theoretically allows for both negative and positive selection. Both systems have been used to select for zinc fingers that have affinity for the motif 5'-GGGGCAGAA-3' from a library of approximately 2 x 10(5) variants. The systems have been engineered to report on zinc finger-DNA binding with dissociation constants less than about 1 microM in order to be most applicable for evaluating binding specificity in an in vivo setting.  相似文献   

16.
Aryl thiolates have unique reactive, redox, electronic, and spectroscopic properties. A practical approach to synthesize peptides containing thiophenylalanine has been developed via a novel Cu(I)-mediated cross-coupling reaction between thiolacetic acid and iodophenylalanine-containing peptides in the solid phase. This approach is compatible with all canonical proteinogenic functional groups, providing general access to aryl thiolates in peptides. Peptides containing thiophenylalanine (pK(a) 6.4) were readily elaborated to contain methyl, allyl, and nitrobenzyl thioethers, disulfides, sulfoxides, sulfones, or sulfonates.  相似文献   

17.
Nomura A  Sugiura Y 《Inorganic chemistry》2002,41(14):3693-3698
Little is known about the contribution of individual zinc-ligating amino acid residues for coupling between zinc binding and protein folding in zinc finger domains. To understand such roles of each zinc ligand, four zinc finger mutant peptides corresponding to the second zinc finger domain of Sp1 were synthesized. In the mutant peptides, glycine was substituted for one of four zinc ligands. Their metal binding and folding properties were spectroscopically characterized and compared to those of the native zinc finger peptide. In particular, the electronic charge-transfer and d-d bands of the Co(II)-substituted peptide complexes were used to examine the metal coordination number and geometry. Fluorescence emission studies revealed that the mutant peptides are capable of binding zinc despite removing one ligand. Circular dichroism results clearly showed the induction of an alpha-helix by zinc binding. In addition, the structures of certain mutant zinc finger peptides were simulated by molecular dynamics calculation. The information indicates that His23 and the hydrophobic core formed between the alpha-helix and the beta-sheet play an essential role in alpha-helix induction. This report demonstrates that each ligand does not contribute equally to alpha-helix formation and coordination geometry in the zinc finger peptide.  相似文献   

18.
19.
A charged Yukawa liquid confined in a slit nanopore is studied in order to understand excluded volume effects in the interaction force between the pore walls. A previously developed self-consistent scheme [S. Buyukdagli, C. V. Achim, and T. Ala-Nissila, J. Stat. Mech. 2011, P05033] and a new simpler variational procedure that self-consistently couple image forces, surface charge induced electric field, and pore modified core interactions are used to this aim. For neutral pores, it is shown that with increasing pore size, the theory predicts a transition of the interplate pressure from an attractive to a strongly repulsive regime associated with an ionic packing state, an effect observed in previous Monte Carlo simulations for hard core charges. We also establish the mean-field theory of the model and show that for dielectrically homogeneous pores, the mean-field regime of the interaction between the walls corresponds to large pores of size d > 4 ?. The role of the range of core interactions in the ionic rejection and interplate pressure is thoroughly analyzed. We show that the physics of the system can be split into two screening regimes. The ionic packing effect takes place in the regime of moderately screened core interactions characterized with the bare screening parameter of the Yukawa potential b ? 3/l(B), where l(B) is the Bjerrum length. In the second regime of strongly screened core interactions b ? 3/l(B), solvation forces associated with these interactions positively contribute to the ionic rejection driven by electrostatic forces and enhance the magnitude of the attractive pressure. For weakly charged pores without a dielectric discontinuity, core interactions make a net repulsive contribution to the interplate force and also result in oscillatory pressure curves, whereas for intermediate surface charges, these interactions exclusively strengthen the external pressure, thereby reducing the magnitude of the net repulsive interplate force. The pronounced dependence of the interplate pressure and ionic partition coefficients on the magnitude and the range of core interactions indicates excluded volume effects as an important ion specificity and a non-negligible ingredient for the stability of macromolecules in electrolyte solutions.  相似文献   

20.
Quantum mechanical calculations reveal the preferred mechanism and origins of chemoselectivity for HOCl-mediated oxidation of zinc-bound thiolates implicated in bacterial redox sensing. Distortion/interaction models show that minimizing geometric distortion at the zinc complex during the rate-limiting nucleophilic substitution step controls the mechanistic preference for OH over Cl transfer with HOCl and the chemoselectivity for HOCl over H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号