首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Recently, we have found that 4He films thin near the lambda point. Based on our measurements, the thinning appears to be caused by the confinement of superfluid order parameter fluctuations in the films. The phenomenon of the thinning is believed to be analogous to the Casimir effect in electromagnetism where the confinement of electromagnetic fluctuations causes the vacuum layer that separates two metal plates to thin. In this paper, we report the result of an experiment extending our previous study to 3He–4He mixture films. Thinning is found near the new lambda points and the characteristics of the thinning are similar to that found in pure 4He films.  相似文献   

2.
The spatial confinement of a fluctuation spectrum leads to forces at the confining boundaries. While electromagnetic (EM) fluctuations lead to the well-known dispersion forces, the acoustic analogy has widely been neglected. We show that the strength of the forces resulting from confined acoustic modes may be of the same order of magnitude as van der Waals forces. Additionally, the predicted scaling behavior is identical to the non-retarded case of the EM fluctuations. Our results suggest that dewetting experiments using polymer films are strongly influenced by the acoustic dispersion forces. Received 5 March 2002 and Received in final form 21 May 2002  相似文献   

3.
We have found the electron density of states in a thin liquid metallic film for an arbitrary form of the boundary conditions for the wavefunctions of the electrons on the film surface. Assuming a Fermi distribution of the electron energies, we have calculated the thermodynamic characteristics of the film and determined the electronic component of the disjoining pressure. It has been shown that the ambient medium and the state of the surface determine the value and the sign of the electronic component of the disjoining pressure. We have determined the conditions for which a stable state of liquid metallic films is ensured.  相似文献   

4.
We study the dewetting process of a thin liquid film on a chemically patterned solid substrate (template) by means of a thin-film evolution equation incorporating a space-dependent disjoining pressure. Dewetting of a thin film on a homogeneous substrate leads to fluid patterns with a typical length scale, that increases monotonously in time (coarsening). Conditions are identified for the amplitude and periodicity of the heterogeneity that allow to transfer the template pattern onto the liquid structure ("pinning") emerging from the dewetting process. A bifurcation and stability analysis of the possible liquid ridge solutions on a periodically striped substrate reveal parameter ranges where pinning or coarsening ultimately prevail. We obtain an extended parameter range of multistability of the pinning and coarsening morphologies. In this regime, the selected pattern depends sensitively on the initial conditions and potential finite perturbations (noise) in the system as we illustrate with numerical integrations in time. Finally, we discuss the instability to transversal modes leading to a decay of the ridges into rows of drops and show that it may diminish the size of the parameter range where the pinning of the thin film to the template is successful.Received: 29 January 2003, Published online: 15 July 2003PACS: 68.15.+e Liquid thin films - 81.16.Rf Nanoscale pattern formation - 47.20.Ky Nonlinearity (including bifurcation theory)  相似文献   

5.
叶学民  杨少东  李春曦 《物理学报》2017,66(18):184702-184702
针对含不溶性活性剂的垂直液膜排液过程,基于文献实验结果进一步完善了受活性剂浓度影响的分离压(disjoining pressure)模型,应用润滑理论建立了液膜厚度、活性剂浓度和液膜表面速度的演化方程组,通过数值计算分析了在不同分离压作用下含不溶性活性剂液膜的演化特征.结果表明,垂直液膜的排液过程通常经历两个阶段:首先是厚膜阶段,此时重力对排液过程起主导作用.在随后的薄膜阶段,毛细作用和分离压作用影响逐渐增大,其中分离压将控制液膜的演化历程.分离压对垂直液膜排液过程的影响与活性剂类型及活性剂浓度与静电作用力的关联强度密切相关.当分离压与活性剂浓度正相关时,随斥力关联系数α增大,液膜的排液和变薄过程得以减缓,由此增强了液膜稳定性;当分离压与活性剂浓度负相关时,随斥力关联系数α绝对值增大,液膜排液过程加速,由此加大液膜失稳的风险.  相似文献   

6.
We consider recent developments in the theory and modelling of unstable thin films, pointing out some recently suggested alternative routes and methods to account for phenomena such as nucleations and density fluctuations.Received: 1 August 2003PACS: 68.15. + e Liquid thin films - 47.20.Ma Interfacial instability  相似文献   

7.
Hydrogenated amorphous carbon (a-C:H) is a state-of-the-art material with established properties such as high mechanical resistance, low friction, and chemical inertness. In this work, a-C:H thin films were deposited by plasma-assisted chemical vapor deposition. The deposition process was enhanced by electrostatic confinement that leads to decrease the working pressure achieving relative high deposition rates. The a-C:H thin films were characterized by elastic recoil detection analysis, Rutherford backscattering spectroscopy, scanning electron microscopy, Raman spectroscopy, and nanoindentation measurements. The hydrogen content and hardness of a-C:H thin films vary from 30 to 45 at% and from 5 to 15 GPa, respectively. The hardness of a-C:H thin films shows a maximum as a function of the working pressure and is linearly increased with the shifting of the G-peak position and I D/I G ratio. The structure of a-C:H thin films suffers a clustering process at low working pressures. A physical model is proposed to estimate the mean ion energy of carbonaceous species arriving at the surface of a-C:H thin films as a function of processing parameters as pressure and voltage and by considering fundamentals scattering events between ion species and neutral molecules and atoms.  相似文献   

8.
A thin film evaporation model based on the augmented Young–Laplace equation and kinetic theories was developed to describe the nanofluid effects on the extended evaporating meniscus in a microchannel. The nanofluid effects include the structural disjoining pressure, a thin porous coating layer at the surface formed by the nanoparticle deposition and the thermophysical property variations compared with the base fluid. The results show that the nanofluid thermal conductivity enhancement mainly due to the Brownian motion tends to greatly increase the liquid film thickness and the thin film heat transfer. The structural disjoining pressure effect tends to enhance the nanofluid spreading capability and the thin film evaporation. The nanoparticle-deposited porous coating layer improves the surface wettability while significantly reducing the thin film evaporation with increasing layer thickness due to the thermal resistance across this layer. The nanofluid thermal conductivity enhancement together with the structural disjoining pressure effect can not counteract the thermal resistance effects of the porous coating layer when the coating layer thickness is sufficiently large.  相似文献   

9.
We use the functional integral technique of Edwards and Lenard to solve the statistical mechanics of a one-dimensional Coulomb gas with boundary interactions leading to surface charging. The theory examined is a one-dimensional model for a soap film. Finite-size effects and the phenomenon of charge regulation are studied. We also discuss the disjoining pressure for such a film. Even in the absence of boundary potentials we find that the presence of a surface affects the physics in finite systems. In general we find that in the presence of a boundary potential the long-distance disjoining pressure is positive, but may become negative at closer interplane separations. This is in accordance with the attractive forces seen at close separations in colloidal and soap film experiments and with three dimensional calculations beyond mean field. Finally, our exact results are compared with the predictions of the corresponding Poisson–Boltzmann theory which is often used in the context of colloidal and thin liquid film systems.  相似文献   

10.
Studies of thin liquid films, made from semidilute polyelectrolyte solutions, are presented. The disjoining pressure variation with film thickness exhibits oscillations, corresponding to film stratification. The oscillations become sharper as the polymer concentration c increases, and disappear when salt is added. The period of the oscillations scales as c -1/2. The observed stratification is related to the polymer network and the size of the steps to the mesh size ξ. Received 25 April 2000 and Received in final form 3 October 2000  相似文献   

11.
基于微肋管的微沟槽表面薄液膜沸腾理论模型   总被引:2,自引:1,他引:1  
本文提出了基于微肋管的薄液膜蒸发沸腾的输运现象数学模型及其有限差分求解方法。数值模拟结果表明,在蒸发扩张半月形液膜中,非蒸发液膜区域液膜形状主要取决于分子膨胀压力;在薄液膜区域与非蒸发区域的连接处存在着一个强烈的蒸发点,这是膨胀压力和表面张力共同作用的结果;在本征半月形液膜区域压力梯度几乎完全取决于表面张力,因而在该区域内液膜形状可以假定为圆弧形状。  相似文献   

12.
When a thin glassy film is strained uniaxially, a shear deformation zone (SDZ) can be observed. The ratio of the thickness of the SDZ to that of the undeformed film is related to the maximum extension ratio, lambda, which depends on the entanglement molecular weight, M(e). We have measured lambda as a function of film thickness in strained freestanding films of polystyrene as a probe of M(e) in confinement. It is found that thin films stretch further than thick films before failure, consistent with the interpretation that polymers in thin films are less entangled than bulk polymers, thus the effective value of M(e) in thin films is significantly larger than that of the bulk. Our results are well described by a conceptually simple model based on the probability of finding intermolecular entanglements near an interface.  相似文献   

13.
Energetic considerations indicate that long-range Van der Waals forces stabilize thin polystyrene (PS) films against height fluctuations on silicon substrates. Nevertheless, we report here on the amplification of capillary waves of specific wavelengths for 15 nm thick PS films on silicon, ultimately leading to dewetting in a spinodal-like process. However, the temporal dependence of the wavelength of the growing instability does not agree with the classical spinodal dewetting mechanism. Therefore, this phenomenon is ascribed to the existence of structural forces resulting either from the restructuring of the films or from density variations within the films during annealing, in accordance with recent theoretical treatments. The process is shown not to be limited to polystyrene films, which indicates the generality of our findings.Received: 1 August 2003PACS: 68.15. + e Liquid thin films - 47.20.-k Hydrodynamic stability - 47.20.Ma Interfacial instability - 68.08.-p Liquid-solid interfaces  相似文献   

14.
This paper reports the results of calculating the disjoining pressure and average thickness of smectic layers in free-standing liquid-crystal films heated above the temperature of breakdown of the smectic order in the bulk of the mesogens. The effect of the disjoining pressure on the reflectivity of free-standing smectic-A films with different numbers of smectic layers has been studied. The results of the calculations agree with the experimental study of the reflectivity of free-standing smectic-A films in the optical wavelength range.  相似文献   

15.
We have investigated spontaneous surface instabilities of very thin polymer films. Film stability and the wavelength of the dominating unstable mode were found to depend sensitively on the media adjacent to the film. Our experimental results cannot be explained by van der Waals interactions alone. To account for the presence of an additional destabilizing force, we propose that the geometrical confinement of thermally excited acoustic waves gives rise to a force that is strong enough to destabilize thin films. This thermoacoustic effect is of similar magnitude as van der Waals forces.  相似文献   

16.
The general gradient theory of fluid microstructures is outlined. This theory reduces the determination of fluid microstructures to a boundary value problem. The density and pressure tensor profiles and the tension of planar thin films and layered structures in one-component fluids are investigated. The boundary conditions determining these structures are given a geometric interpretation in the free energy-density diagram. Discussed are the implications of the theory for the validity of Antonov's rule, the duplex film hypothesis, and the asymptotic theory of disjoining pressure and of the origin of a characteristic length scale in spinodal decomposition.This work was supported financially by the U.S. Department of Energy and the National Science Foundation.  相似文献   

17.
采用射频反应磁控溅射法在玻璃衬底上成功制备出具有c轴高择优取向的ZnO薄膜,利用X射线衍射及紫外-可见吸收和透射光谱研究了氧分压变化对ZnO薄膜的微观结构及光吸收特性的影响。结果表明,当工作气压恒定时,用射频反应磁控溅射制备的ZnO薄膜的生长行为主要取决于成膜空间中氧的密度,合适的氧分压能够提高ZnO薄膜的结晶质量;薄膜在可见光区的平均透过率达到90%以上,且随着氧分压的增大,薄膜的光学带隙发生了一定程度的变化。采用量子限域模型对薄膜的光学带隙作了相应的理论计算,计算结果与对样品吸收谱所作的拟合结果符合较好,二者的变化趋势完全一致,表明ZnO纳米晶粒较小时,薄膜光学带隙的变化与量子限域效应有很大关系。  相似文献   

18.
The influence of a disjoining pressure on the nonlinear oscillations of a thin charged liquid layer on the surface of a spherical solid core is investigated by means of second-order asymptotic calculations. With the initial deformation governed by a kth mode in the spectrum of modes excited via nonlinear interaction, the disjoining pressure causes the frequencies of modes with numbers smaller than k to decrease and the frequencies of modes with numbers larger than k to increase. In the presence of the disjoining pressure, the amplitudes of all nonlinearly excited modes grow compared with the respective amplitudes without the pressure.  相似文献   

19.
表面弹性和分离压耦合作用下的垂直液膜排液过程   总被引:1,自引:0,他引:1       下载免费PDF全文
叶学民  李明兰  张湘珊  李春曦 《物理学报》2018,67(16):164701-164701
针对含不溶性活性剂的垂直液膜排液过程,在考虑表面弹性和分离压耦合作用的基础上,采用润滑理论建立了液膜厚度、表面速度和活性剂浓度的演化方程组,通过数值计算分析了表面弹性和分离压单独作用和耦合作用下的液膜演化特征.结果表明:表面弹性与分离压均对垂直液膜排液过程有显著影响.表面弹性单独作用时,液膜初始厚度随弹性增大,黑膜仅在液膜顶部形成,长度较短且不能稳定存在;分离压单独作用时,活性剂随流体不断汇集在底端,液膜表面无法形成表面张力梯度,不发生逆流现象;当二者耦合作用时,可得到较稳定的液膜,排液前期增加表面弹性可提高液膜的厚度、降低表面速度和促使液体逆流,从而减缓排液过程;后期出现黑膜后,分离压中的静电斥力起主要作用,延缓液膜"老化".  相似文献   

20.
镶嵌在氢化氮化硅中纳米非晶硅粒子光吸收的模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
采用量子限制效应模型对镶嵌有纳米非晶硅粒子的氢化氮化硅薄膜的光吸收进行了理论模拟,探讨了由吸收谱分析给出该结构薄膜光学参数的方法,并通过对不同氮含量样品的讨论给出了量子限制效应和纳米硅粒子表面的结构无序对薄膜光吸收特性的影响规律。分析结果表明,随氮含量的增加,薄膜有效光学带隙增大,该结果与薄膜中纳米硅粒子平均尺寸的减小引起的量子限制效应的增强相关,而小粒度纳米硅粒子比例增加所引入的较高微观结构无序度和较多缺陷将会导致薄膜低能吸收区吸收系数增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号