首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a new nonparametric approach using Bernstein copula approximation is proposed to estimate Pickands dependence function. New data points obtained with Bernstein copula approximation serve to estimate the unknown Pickands dependence function. Kernel regression method is then used to derive an intrinsic estimator satisfying the convexity. Some extreme-value copula models are used to measure the performance of the estimator by a comprehensive simulation study. Also, a real-data example is illustrated. The proposed Pickands estimator provides a flexible way to have a better fit and has a better performance than the conventional estimators.  相似文献   

2.
We present an optimal piecewise-linear approximation method for the objective function of separable convex quadratic programs. The method provides guidelines on how many grid points to use and how to position them for a piecewise-linear approximation if the error induced by the approximation is to be bounded a priori.Corresponding author.  相似文献   

3.
Z. Akbari 《Optimization》2017,66(9):1519-1529
In this paper, we present a nonsmooth trust region method for solving linearly constrained optimization problems with a locally Lipschitz objective function. Using the approximation of the steepest descent direction, a quadratic approximation of the objective function is constructed. The null space technique is applied to handle the constraints of the quadratic subproblem. Next, the CG-Steihaug method is applied to solve the new approximation quadratic model with only the trust region constraint. Finally, the convergence of presented algorithm is proved. This algorithm is implemented in the MATLAB environment and the numerical results are reported.  相似文献   

4.
In this paper, a new derivative free trust region method is developed basedon the conic interpolation model for the unconstrained optimization. The conic inter-polation model is built by means of the quadratic model function, the collinear scalingformula, quadratic approximation and interpolation. All the parameters in this model axedetermined by objective function interpolation condition. A new derivative free method isdeveloped based upon this model and the global convergence of this new method is provedwithout any information on gradient.  相似文献   

5.
We consider the problem of minimizing a nondifferentiable function that is the pointwise maximum over a compact family of continuously differentiable functions. We suppose that a certain convex approximation to the objective function can be evaluated. An iterative method is given which uses as successive search directions approximate solutions of semi-infinite quadratic programming problems calculated via a new generalized proximity algorithm. Inexact line searches ensure global convergence of the method to stationary points.This work was supported by Project No. CPBP-02.15/2.1.1.  相似文献   

6.
Predictive recursion (PR) is a fast stochastic algorithm for nonparametric estimation of mixing distributions in mixture models. It is known that the PR estimates of both the mixing and mixture densities are consistent under fairly mild conditions, but currently very little is known about the rate of convergence. Here I first investigate asymptotic convergence properties of the PR estimate under model misspecification in the special case of finite mixtures with known support. Tools from stochastic approximation theory are used to prove that the PR estimates converge, to the best Kullback-Leibler approximation, at a nearly root-n rate. When the support is unknown, PR can be used to construct an objective function which, when optimized, yields an estimate of the support. I apply the known-support results to derive a rate of convergence for this modified PR estimate in the unknown support case, which compares favorably to known optimal rates.  相似文献   

7.
We describe a novel method for minimisation of univariate functions which exhibits an essentially quadratic convergence and whose convergence interval is only limited by the existence of near maxima. Minimisation is achieved through a fixed-point iterative algorithm, involving only the first and second-order derivatives, that eliminates the effects of near inflexion points on convergence, as usually observed in other minimisation methods based on the quadratic approximation. Comparative numerical studies against the standard quadratic and Brent's methods demonstrate clearly the high robustness, high precision and convergence rate of the new method, even when a finite difference approximation is used in the evaluation of the second-order derivative.  相似文献   

8.
The most used formula for calculation of Fourier integrals is Filon's formula which is based on approximation of the function by a quadratic in each double interval. In order to obtain a better approximation we use the cubic spline fit. The method is not restricted to equidistant points, but the final formulas are only derived in this case. Test computations show that the spline formula may be superior to Filon's formula.  相似文献   

9.
Based on the NEWUOA algorithm, a new derivative-free algorithm is developed, named LCOBYQA. The main aim of the algorithm is to find a minimizer $x^{*} \in\mathbb{R}^{n}$ of a non-linear function, whose derivatives are unavailable, subject to linear inequality constraints. The algorithm is based on the model of the given function constructed from a set of interpolation points. LCOBYQA is iterative, at each iteration it constructs a quadratic approximation (model) of the objective function that satisfies interpolation conditions, and leaves some freedom in the model. The remaining freedom is resolved by minimizing the Frobenius norm of the change to the second derivative matrix of the model. The model is then minimized by a trust-region subproblem using the conjugate gradient method for a new iterate. At times the new iterate is found from a model iteration, designed to improve the geometry of the interpolation points. Numerical results are presented which show that LCOBYQA works well and is very competing against available model-based derivative-free algorithms.  相似文献   

10.
In this paper,a new quasi-interpolation with radial basis functions which satis- fies quadratic polynomial reproduction is constructed on the infinite set of equally spaced data.A new basis function is constructed by making convolution integral with a constructed spline and a given radial basis function.In particular,for twicely differ- entiable function the proposed method provides better approximation and also takes care of derivatives approximation.  相似文献   

11.
Function Minimization by Interpolation in a Data Table   总被引:2,自引:0,他引:2  
A method is described for unconstrained function minimizationusing function values and no derivatives. A quadratic modelof the function is formed by interpolation to points in a tableof function values. The quadratic model (not necessarily positivedefinite) is minimized over a constraining region of validityto locate the next trial point. The points of interpolationare chosen from a data table containing function values at aninitial grid and at subsequent trial points. The method is efficientin its use of function evaluations, but expensive in computationrequired to choose new trial points.  相似文献   

12.
We propose a new approach which generalizes and improves principal component analysis (PCA) and its recent advances. The approach is based on the following underlying ideas. PCA can be reformulated as a technique which provides the best linear estimator of the fixed rank for random vectors. By the proposed method, the vector estimate is presented in a special quadratic form aimed to improve the error of estimation compared with customary linear estimates. The vector is first pre-estimated from the special iterative procedure such that each iterative loop consists of a solution of the unconstrained nonlinear best approximation problem. Then, the final vector estimate is obtained from a solution of the constrained best approximation problem with the quadratic approximant. We show that the combination of these techniques allows us to provide a new nonlinear estimator with a significantly better performance compared with that of PCA and its known modifications.  相似文献   

13.
This paper presents an algorithm for finding a global minimum of a multimodal, multivariate and nondifferentiable function. The algorithm is a modification to the new version of the Price’s algorithm given in Brachetti et al. [J. Global Optim. 10, 165–184 (1997)]. Its distinguishing features include: (1) The number-theoretic method is applied to generate the initial population so that the points in the initial population are uniformly scattered, and therefore the algorithm could explore uniformly the region of interest at the initial iteration; (2) The simplified quadratic approximation with the three best points is employed to improve the local search ability and the accuracy of the minimum function value, and to reduce greatly the computational overhead of the algorithm. Two sets of experiments are carried out to illustrate the efficiency of the number-theoretic method and the simplified quadratic model separately. The proposed algorithm has also been compared with the original one by solving a wide set of benchmark problems. Numerical results show that the proposed algorithm requires a smaller number of function evaluations and, in many cases, yields a smaller or more accurate minimum function value. The algorithm can also be used to deal with the medium size optimization problems.  相似文献   

14.

Truncated realized quadratic variations (TRQV) are among the most widely used high-frequency-based nonparametric methods to estimate the volatility of a process in the presence of jumps. Nevertheless, the truncation level is known to critically affect its performance, especially in the presence of infinite variation jumps. In this paper, we study the optimal truncation level, in the mean-square error sense, for a semiparametric tempered stable Lévy model. We obtain a novel closed-form 2nd-order approximation of the optimal threshold in a high-frequency setting. As an application, we propose a new estimation method, which combines iteratively an approximate semiparametric method of moment estimator and TRQVs with the newly found small-time approximation for the optimal threshold. The method is tested via simulations to estimate the volatility and the Blumenthal-Getoor index of a generalized CGMY model and, via a localization technique, to estimate the integrated volatility of a Heston type model with CGMY jumps. Our method is found to outperform other alternatives proposed in the literature when working with a Lévy process (i.e., the volatility is constant), or when the index of jump intensity Y is larger than 3/2 in the presence of stochastic volatility.

  相似文献   

15.
A new class of quasi-Newton methods is introduced that can locate a unique stationary point of ann-dimensional quadratic function in at mostn steps. When applied to positive-definite or negative-definite quadratic functions, the new class is identical to Huang's symmetric family of quasi-Newton methods (Ref. 1). Unlike the latter, however, the new family can handle indefinite quadratic forms and therefore is capable of solving saddlepoint problems that arise, for instance, in constrained optimization. The novel feature of the new class is a planar iteration that is activated whenever the algorithm encounters a near-singular direction of search, along which the objective function approaches zero curvature. In such iterations, the next point is selected as the stationary point of the objective function over a plane containing the problematic search direction, and the inverse Hessian approximation is updated with respect to that plane via a new four-parameter family of rank-three updates. It is shown that the new class possesses properties which are similar to or which generalize the properties of Huang's family. Furthermore, the new method is equivalent to Fletcher's (Ref. 2) modified version of Luenberger's (Ref. 3) hyperbolic pairs method, with respect to the metric defined by the initial inverse Hessian approximation. Several issues related to implementing the proposed method in nonquadratic cases are discussed.An earlier version of this paper was presented at the 10th Mathematical Programing Symposium, Montreal, Canada, 1979.  相似文献   

16.
This paper studies adaptive thinning strategies for approximating a large set of scattered data by piecewise linear functions over triangulated subsets. Our strategies depend on both the locations of the data points in the plane, and the values of the sampled function at these points—adaptive thinning. All our thinning strategies remove data points one by one, so as to minimize an estimate of the error that results by the removal of a point from the current set of points (this estimate is termed “anticipated error”). The thinning process generates subsets of “most significant” points, such that the piecewise linear interpolants over the Delaunay triangulations of these subsets approximate progressively the function values sampled at the original scattered points, and such that the approximation errors are small relative to the number of points in the subsets. We design various methods for computing the anticipated error at reasonable cost, and compare and test the performance of the methods. It is proved that for data sampled from a convex function, with the strategy of convex triangulation, the actual error is minimized by minimizing the best performing measure of anticipated error. It is also shown that for data sampled from certain quadratic polynomials, adaptive thinning is equivalent to thinning which depends only on the locations of the data points—nonadaptive thinning. Based on our numerical tests and comparisons, two practical adaptive thinning algorithms are proposed for thinning large data sets, one which is more accurate and another which is faster.  相似文献   

17.
A method for approximation of functions of two variables by a linear combination of non-negative piecewise linear functions with a compact support is presented. Two quadratic pyramids are used as generating functions for the system of shifts. The accuracy of this local method is proved to have the same order as the best approximation by piecewise linear functions.  相似文献   

18.
For statistical inferences that involve covariance matrices, it is desirable to obtain an accurate covariance matrix estimate with a well-structured eigen-system. We propose to estimate the covariance matrix through its matrix logarithm based on an approximate log-likelihood function. We develop a generalization of the Leonard and Hsu log-likelihood approximation that no longer requires a nonsingular sample covariance matrix. The matrix log-transformation provides the ability to impose a convex penalty on the transformed likelihood such that the largest and smallest eigenvalues of the covariance matrix estimate can be regularized simultaneously. The proposed method transforms the problem of estimating the covariance matrix into the problem of estimating a symmetric matrix, which can be solved efficiently by an iterative quadratic programming algorithm. The merits of the proposed method are illustrated by a simulation study and two real applications in classification and portfolio optimization. Supplementary materials for this article are available online.  相似文献   

19.
For multicriteria convex optimization problems, new nonadaptive methods are proposed for polyhedral approximation of the multidimensional Edgeworth-Pareto hull (EPH), which is a maximal set having the same Pareto frontier as the set of feasible criteria vectors. The methods are based on evaluating the support function of the EPH for a collection of directions generated by a suboptimal covering on the unit sphere. Such directions are constructed in advance by applying an asymptotically effective adaptive method for the polyhedral approximation of convex compact bodies, namely, by the estimate refinement method. Due to the a priori definition of the directions, the proposed EPH approximation procedure can easily be implemented with parallel computations. Moreover, the use of nonadaptive methods considerably simplifies the organization of EPH approximation on the Internet. Experiments with an applied problem (from 3 to 5 criteria) showed that the methods are fairly similar in characteristics to adaptive methods. Therefore, they can be used in parallel computations and on the Internet.  相似文献   

20.
Based on simple quadratic models of the trust region subproblem, we combine the trust region method with the nonmonotone and adaptive techniques to propose a new nonmonotone adaptive trust region algorithm for unconstrained optimization. Unlike traditional trust region method, our trust region subproblem is very simple by using a new scale approximation of the minimizing function??s Hessian. The new method needs less memory capacitance and computational complexity. The convergence results of the method are proved under certain conditions. Numerical results show that the new method is effective and attractive for large scale unconstrained problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号