首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The photolysis of Fe(III)-pyruvate and Fe(III)-citrate complexes in water produces hydroxyl radicals in the presence of dissolved oxygen, and can promote the oxidation of organic compounds. The photodegradation of glyphosate with Fe(III)-pyruvate and Fe(III)-citrate complexes was investigated under irradiation at λ?≥?365?nm. The effect of initial concentration of glyphosate, the initial pH value, and the Fe(III)/carboxylate ratio were examined. Upon irradiation of glyphosate aqueous solution with the complexes in the acidic range of natural waters, the bioavailable orthophosphate could be released from degradation of glyphosate. The amount of orthophosphate increased with increasing Fe(III)/carboxylate ratio.  相似文献   

3.
The citrate complexes of Zn(2+) and Cd(2+) have been investigated by pH titration at I = 0.1 M (KNO(3)) and 10, 25, 35 and 45 degrees . The species found were [Zn(cit)](-), [Zn(cit)H], [Zn(cit)(2)](4-) and [Zn(2)(cit)(2)H(-)(2)](4-), [Cd(cit)](-), [Cd(cit)H], [Cd(cit)(2)](4-) and [Cd(cit)H(-1)](2-). From the dependence of the formation constants on temperature, DeltaH degrees and DeltaS degrees values were calculated. Speciation in the Zn(2+)]- and Cd(2+)-citrate systems is discussed with particular attention to formation of polynuclear species. Some comparisons with literature data are made.  相似文献   

4.
Malik WU  Om H 《Talanta》1967,14(11):1341-1343
An amperometric titration of cobalt(II) with hexacyanoferrate(III) in aqueous ammonium citrate or aqueous glycine solution at pH 9.8 or pH 8.0 respectively, is reported. Cobalt concentrations of 2-30 mg/l were successfully determined. In citrate solutions cerium(III) and iron(III) interfered, and in glycine solutions, copper(II) and vanadium(V).  相似文献   

5.
The H-point standard addition method was applied to kinetic data for simultaneous determination of Fe(II) and Fe(III) or selective determination of Fe(II) in the presence of Fe(III). The method is based on the difference in the rate of complex formation between iron in two different oxidation states and methylthymol blue (MTB) at pH 3.5 in mixed cetyltrimethylammonium bromide (CTAB) and Triton X-100 micellar medium. Fe(II) can be determined in the range 0.25-2.5 microg ml(-1) with satisfactory accuracy and precision in the presence of excess Fe(III) and other metal ions that rapidly form complexes with MTB under working condition. The proposed method was successfully applied to the simultaneous determination of Fe(II) and Fe(III) or selective determination of Fe(II) in the presence of Fe(III) in spiked real environmental and synthetic samples with complex composition.  相似文献   

6.
The oxidation rates of nanomolar levels of Fe(II) in seawater (salinity S = 36.2) by mixtures of O2 and H2O2 has been measured as a function of pH (5.8–8.4) and temperature (3–35∘C). A competition exists for the oxidation of Fe(II) in the presence of both O2 (μ mol⋅L−1 levels) and H2O2 (nmol⋅L−1 levels). A kinetic model has been applied to explain the experimental results that considers the interactions of Fe(II) with the major ions in seawater. In the presence of both oxidants, the hydrolyzed Fe(II) species dominate the Fe(II) oxidation process between pH 6 and 8.5. Over pH range 6.2–7.9, the FeOH+ species are the most active, whereas above pH 7.9, the Fe(OH)02 species are the most active at the levels of CO2−3 concentration present in seawater. The predicted Fe(II) oxidation rate at [Fe(II)]0 = 30nmol⋅L−1 and pH = 8.17 in the oxygen-saturated seawater with [H2O2]0 = 50nmol⋅L−1 (log 10 k = −2.24s−1) is in excellent agreement with the experimental value of log 10 k = −2.29s−1 ([H2O2]0 = 55nmol⋅L−1, pH = 8).  相似文献   

7.
The H-point standard addition method (HPSAM) for simultaneous determination of Fe(II) and Fe(III) is described. The method is based on the difference in the rate of complex formation of iron in two different oxidation states with Gallic acid (GA) at pH 5. Fe(II) and Fe(III) can be determined in the range of 0.02–4.50 μg ml−1 and 0.05–5.00 μg ml−1, respectively, with satisfactory accuracy and precision in the presence of other metal ions, which rapidly form complexes with GA under working conditions. The proposed method was successfully applied for simultaneous determination of Fe(II) and Fe(III) in several environmental and synthetic samples with different concentration ratios of Fe(II) and Fe(III).  相似文献   

8.
The photodegradation of atrazine in aqueous solutions containing citrate and Fe(III) was studied under Xe lamp irradiation on a time scale of hours. It was found that the presence of Fe(III)–citrate complex enhanced the photodegradation rate of atrazine as a result of OH attack. Atrazine photodegradation followed first-order reaction kinetics and the rate depended upon pH and light intensity. High citrate concentrations led to increased photodegradation of atrazine due to the fact that citrate not only acted as a carboxylate ligand but also a reductant of Fe(III). The interaction of Fe(III) with citrate was characterized using UV–visible absorption and Fourier-transform infrared (FTIR) spectroscopy, indicating that the hydrogen ions on the carboxyl groups were exchanged for Fe(III) ions. On the basis of these results, a reaction scheme was proposed in which the cycling of iron and carbon, the depletion of citrate and O2, and the formation of reactive oxygen species (ROS) were involved.  相似文献   

9.
The speciation of iron in seawater is receiving much attention worldwide, and several methods have been developed to measure its various chemical species. Although probably the most important in algal iron accumulation, Fe(II) is very unstable in seawater, is rapidly oxidised to Fe(III), thus the time between collection of the samples and the actual Fe(II) assessment may have significant impact on the obtained results. Especially for kinetic analysis, where radiotracer methods ask for off-line counting, waiting times should be taken into account.The present paper presents a model to account for waiting time in off-line Fe(II) assessment. The model comprises Fe(II) oxidation in a reducing environment (∼1 × 10−5 M Na2SO3 in filtered seawater) and binding to column-associated ferrozine, for use with ferrozine preloaded SepPak® C18 cartridges. The model is essentially based on mathematical treatment of transport in micro-vessels and uses known rate factors for the oxidation and reduction of Fe. In off-line chromatographic Fe(II) assessment, the model was shown to account for variances in Fe(II) recoveries ranging from 10 to 54%, and for waiting times ranging from 2 to 80 min. The presented data shows that waiting time resulted in underestimation up to a factor 10 as measured by direct recovery counting of loaded Fe(II). As excess amounts of ferrozine were used for these experiments, this underestimation will be mainly caused by the oxidation of ferrous iron during this waiting time. The data also suggests that time-modelling may account for all effects, thus permitting off-line counting of Fe(II) without loss of data quality.  相似文献   

10.
Nwabue FI  Okafo EN 《Talanta》1992,39(3):273-280
The extraction of Ni(II), Fe(II), Fe(III) and V(IV) with bis(4-hydroxypent-2-ylidene)-diaminoethane from various acids and buffer solutions has been studied. The golden yellow Fe(II) and wine-red Fe(III) complexes have maximum absorption at 445 and 435 nm respectively, and the yellow-green Ni(II) chelate shows two maxima, at 373 and 560 nm. The blue-green V(IV) chelate also has two maxima, at 580 and 660 nm. These characteristics can be used for the determination of these species. Iron, nickel and vanadium have been separated and determined in the presence of one another and of many other elements.  相似文献   

11.
The H-point standard addition method (HPSAM) was applied to kinetic data for simultaneous determination of Fe(III) and Fe(II) or selective determination of Fe(III) in the presence of Fe(II). The method is based on the difference in the rate of two processes; reduction of Fe(III) with Co(II) and subsequent complex formation of resulted Fe(II) with 1,10-phenanthroline, and direct complex formation between Fe(II) and 1,10-phenanthroline in pH 3 and cetyl trimethyl ammonium bromide, CTAB, micellar media. Fe(III) can be determined in the range of 0.75-5.13 mug ml(-1)with satisfactory accuracy and precision in the presence of excess Fe(II) under working conditions. The proposed method was successfully applied to the simultaneous determination of Fe(III) and Fe(II) and also to the selective determination of Fe(III) in the presence of Fe(II) in several synthetic mixtures containing different concentration ratios of Fe(III) to Fe(II).  相似文献   

12.
《Analytical letters》2012,45(10):703-715
Abstract

Evidence for the formation of Fe(III) and Fe(II) complexes with pyruvate ion is presented. Complexes with a 1:2 ratio of Fe(II) to pyruvate and 1:1 ratio of Fe(III) to pyruvate were identified by spectrophotometry. The complexation results in partial kinetic control of the electrochemical oxidation of Fe(II) in citrate buffer. In addition, Fe(III) was found to be chemically reduced by pyruvate. The apparent first order rate constant at 25[ddot]C is 7.12 × 10?2 s ?1in pH 4.0 pyruvate buffer and 1.24 × 10?1 s ?1 in pH 3.2 pyruvate buffer. In pH 4.0 citrate buffer the reaction is not first order and is significantly slower.  相似文献   

13.
The effect of a series of aromatic compounds (toluene, benzyl alcohol, benzonitrile, phenylacetonitrile, and o-cyanotoluene) in a concentration of 0.01 M on the oxidation of Fe(II) aqua ions with oxygen in the presence of Pd(II) tetraaqua complex at 25–70°C was revealed. In the presence of an aromatic compound, palladium black is not formed, which results in an increased yield of Fe(III) in the Pd-catalyzed oxidation of Fe(II) with oxygen in a perchloric acid medium. A scheme involving the formation of a complex of palladium species in an intermediate oxidation state with arene and molecular oxygen was suggested.  相似文献   

14.
The kinetics of hydrolysis of ortho- or para-hydroxybenzylidene-4-benzidine Schiff bases have been examined in the pH range 1.70–11.90, in aqueous media containing 20wt% dioxane, at 20 °C. In basic media, pH > 8.47, a slight increase in the hydrolysis reaction rate of the Schiff bases is observed. In such basic media, the rate-controlling step is the attack of hydroxide ion on the ionized Schiff base. Below pH 6.82, the rate-determining step is ascribed to be the attack of water molecules on the protonated substrate. The effects of Fe(II), Co(II), Ni(II) and Cu(II) ions on the hydrolysis reaction rate of the Schiff bases have been studied and discussed on the basis of formation of a monocyclic chelate rings. The various thermodynamic parameters have also been evaluated and discussed.  相似文献   

15.
Synthetic efforts targeting soluble species of Co(II) with the low molecular mass physiological ligand citric acid led to the isolation of the first dinuclear complex [Co(2)(C(6)H(5)O(7))(2)(H(2)O)(4)](2-), at pH approximately 5, in the form of its K+ (1) and Na+ (2) salts. Both 1 and 2 were characterized analytically, spectroscopically (FT-IR, UV/visible, EPR), and magnetically. Complex 1 crystallizes in the monoclinic space group P2(1)/n, with a = 10.348(5) A, b = 11.578(6) A, c = 12.138(6) A, beta = 112.62(2) degrees, V = 1342(1) A(3), and Z = 2. Complex 2 crystallizes in the monoclinic space group P2(1)/c, with a = 9.234(4) A, b = 11.913(4) A, c = 11.728(6) A, beta = 99.93(2) degrees, V = 1271(1) A(3), and Z = 2. X-ray crystallography on 1 and 2 reveals the presence of two Co(II) ions, in a dinuclear assembly, octahedrally coordinated by two citrate ligands in a tridentate fashion. The octahedral environment around each Co(II) is complemented by another singly bonded citrate belonging to the adjacent Co(II) unit and two water molecules. Magnetic susceptibility and EPR studies on 1, in the solid state, corroborate the X-ray results, indicating a weak interaction between the two Co(II) ions. Moreover, EPR and UV/visible studies in solution suggest that 1 does not retain its dimeric structure, yielding a mononuclear octahedral Co(II)-citrate species. Detailed speciation studies suggest the presence of a number of species including the mononuclear complex [Co(C(6)H(5)O(7))](-), optimally present around pH approximately 5. In consonance with EPR and UV/visible spectroscopy, [Co(C(6)H(5)O(7))](-) is likely the scaffolding unit on the basis of which the dimer [Co(2)(C(6)H(5)O(7))(2)(H(2)O)(4)](2-) is isolated from aqueous solutions. Collectively, this comprehensive study offers significant structural insight into the Co(II)-citrate speciation and the elucidation of the role of Co(II) in biological fluids.  相似文献   

16.
Species arising from Fe(II) hydrolysis in aqueous solution have been investigated using density-functional methods (DFT). The different tautomers and multiplicities of each species have been calculated. The solvation energy has been estimated using the UAHF–PCM method. The hydrolysis free energies have been estimated and compared with the available experimental data. The different hydrolysis species have distinct geometries and electronic structures. The estimated ionization potential of the hydrolyzed species is linearly dependent to the number of hydroxyls present in the complex. The estimated Fe(II)/Fe(III) oxidation potential is in good agreement with previously published results about 0.29 V larger than the experimental value. The results highlight the importance of the chemical speciation in describing electron transfer processes at a molecular level. The PBE/TZVP/UAHF–PCM method has been found to describe correctly the hydrolysis free energies of Fe(II) with an average error about 5 kcal mol−1 from the experimental values.  相似文献   

17.
Hasani M  Yaghoubi L  Abdollahi H 《Talanta》2006,68(5):1528-1535
H-point standard addition method, HPSAM, with simultaneous addition of three analytes is proposed for the resolution of ternary mixtures. It is a modification of the previously described H-point standard addition method that permits the resolution of three species from a unique calibration set by making the simultaneous addition of the three analytes. The method calculates the analyte concentration from spectral data at two wavelengths where the two species selected as interferents present the same absorbance relationship. These wavelength pairs are easily found, and can be selected to give the most precise results. Diethyldithiocarbomate (DDC) in a cationic micellar solution of cetyltrimethylammonium bromide (CTAB) was used for determination of Fe(II), Co(II) and Cu(II) at pH 5.50. The results showed that simultaneous determination of Fe(II), Co(II) and Cu(II) could be preformed in the range of 0.0–6.0, 0.0–8.0 and 0.0–12.0 μg ml−1, respectively. The proposed method was successfully applied to the simultaneous determination of Fe(II), Co(II) and Cu(II) in several synthetic mixtures containing different concentration of Fe(II), Co(II) and Cu(II).  相似文献   

18.
The superoxide dismutase (SOD) activity of iron(II) tetrakis-N,N,N',N'(2-pyridylmethyl)ethylenediamine complex (Fe-TPEN) was reexamined using a pulse radiolysis method. In our previous study (J. Biol. Chem., 264, 9243-9249 (1989)), we reported that this complex has a potent SOD activity in a cyt. c (cytochrome c)-based system (IC50 = 0.8 microM) and protects E. coli cells against paraquat toxicity. The present pulse radiolysis experiment revealed that Fe(II)TPEN reacts stoichiometrically with superoxide to form Fe(III)TPEN with a second-order rate constant of 3.9 x 10(6) M-1 S-1 at pH 7.1, but superoxide did not reduce Fe(III)TPEN to Fe(II)TPEN. The reaction of Fe(III)TPEN and superoxide was biphasic. In the fast reaction, an adduct (Fe(III)TPEN-superoxide complex) was formed at the second-order rate constant of 8.5 x 10(5) M-1 S-1 at pH 7.4. In the slow one, the adduct reacted with another molecule of the adduct, regenerating Fe(III)TPEN. In the cyt. c method with catalase, this Fe(III)TPEN-superoxide complex showed cyt. c oxidation activity, which had led to overestimation of its SOD activity. Based on the titration data, the main species of complex in aqueous media at neutral pH was indicated to be Fe(III)TPEN(OH-). A spectral change after the reduction with hydrated electron indicates that the OH- ion coordinates directly to Fe(III) by displacing one of the pyridine rings. The X-ray analysis of [Fe(II)TPEN]SO4 supported this structure. From the above results we propose a novel reaction mechanism of FeTPEN and superoxide which resembles a proton catalyzed dismuting process, involving Fe(III)TPEN-superoxide complex.  相似文献   

19.
Gil AF  Salgado L  Galicia L  González I 《Talanta》1995,42(3):407-414
A thermodynamic study based on concepts of generalized species and equilibria, was used to understand the distribution of Fe(III) and Fe(II) species in the Fe(III)/Fe(II)/H(2)SO(4)/H(2)O system. The two-dimensional predominance zone diagrams (TDPZ) and Pourbaix type diagrams thus obtained permitted the selection of optimum experimental conditions, to differentiate the chemical species involved in this system. The existence of the different predominant chemical species for Fe(III): Fe(3+), FeSO(+)(4) and Fe(SO(4))(-)(2) was evidenced by spectrophotometrical studies for pSO'(4) values from 4 to 0 units in a buffered solution of pH 0.5. Additionally, voltammetric studies performed on Pt, Au and carbon paste electrodes confirmed that the electron exchange between Fe(III) Fe(II) in H(2)SO(4) media occurs by an inner Helmholtz layer mechanism. It was also possible to show that the representative couples at pSO'(4) = 0 (buffered) are: (a) for pH < 0 FeSO (+)(4)FeHSO (+)(4) and (b) for pH > 1.0: Fe(SO (4)) (-)(2)FeHSO (+)(4). The last couple presents a coupled chemical reaction in the electrochemical mechanism; this reaction is associated with the different coordination numbers of Fe(III) and Fe(II).  相似文献   

20.
2,2'-Bis[2-(1-propylbenzimidazol-2-yl)]biphenyl), 4, and its bis complexes with Fe(II) and Mn(II) have been prepared and characterized structurally and spectroscopically. Ligand 4 adopts an open, "trans" conformation in the solid state with the benzimidazole (BzIm) groups on opposite sides of the biphenyl unit. In its complexes with metal ions, a "cis" conformation is observed, and 4 behaves as a geometrically constraining bidentate ligand with four planar groups connected by three "hinges". Reaction of 4 with Fe(II) or Mn(II) yielded isomorphous crystals (space group Pnn2) of Fe(II)(4)2.(ClO4)2 and Mn(II)(4)2.(ClO4)2, in which the M(II)(4)2 cations exhibit distorted-tetrahedral coordination geometries (N-M-N angles, 109 +/- 11 degrees ) enforced by rigid, chiral nine-membered M(4) rings in the twist-boat-boat conformation. Individually, the cations show R,R or S,S stereochemistry, and the crystals are racemates. Mn(II)(4)2.(ClO4)2 exhibits a quasi-reversible Mn(II) --> Mn(III) oxidation at E(1/2) = 0.64 V; the corresponding Fe(II) --> Fe(III) oxidation occurs at E(1/2) = 1.76 V. The electrochemical stability of the Fe(III) oxidation state in this system suggests the possibility of isolating an unusual pseudotetrahedral Fe(III)N(BzIm)(4) species. Ultraviolet spectra of the iron and manganese complexes are dominated by absorptions of the ligand 4 blue-shifted by approximately 2000-3000 cm(-1). Ligand-field absorptions were observed for the Fe(II) complex; those for the Mn(II) complex were obscured by tailing ultraviolet absorptions. Electron paramagnetic resonance and magnetic susceptibility measurements are consistent with a high-spin Mn(II) complex, while for the Fe(II) complex, the falloff of the magnetic moment with decreasing temperature is indicative of zero-field splitting with D approximately 4 cm(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号