首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unsteady magnetohydrodynamic flow of an electrically conducting viscous incompressible non-Newtonian Bingham fluid bounded by two parallel non-conducting porous plates is studied with heat transfer considering the Hall effect. An external uniform magnetic field is applied perpendicular to the plates and the fluid motion is subjected to a uniform suction and injection. The lower plate is stationary and the upper plate moves with a constant velocity and the two plates are kept at different but constant temperatures. Numerical solutions are obtained for the governing momentum and energy equations taking the Joule and viscous dissipations into consideration. The effect of the Hall term, the parameter describing the non-Newtonian behavior, and the velocity of suction and injection on both the velocity and temperature distributions are studied.  相似文献   

2.
Two dimensional steady, laminar and incompressible motion of a micropolar fluid between an impermeable disk and a permeable disk is considered to investigate the influence of the Reynolds number and the micropolar structure on the flow characteristics. The main flow stream is superimposed by constant injection velocity at the porous disk. An extension of Von Karman’s similarity transformations is applied to reduce governing partial differential equations (PDEs) to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form. An algorithm based on finite difference method is employed to solve these ODEs and Richardson’s extrapolation is used to obtain higher order accuracy. The numerical results reflect the expected physical behavior of the flow phenomenon under consideration. The study indicates that the magnitude of shear stress increases strictly and indefinitely at the impermeable disk while it decreases steadily at the permeable disk, by increasing the injection velocity. Moreover, the micropolar fluids reduce the skin friction as compared to the Newtonian fluids. The magnitude of microrotation increases with increasing the magnitude of R and the micropolar parameters. The present results are in excellent comparison with the available literature results.  相似文献   

3.
Following the method due to Bhatnagar (P. L.) [Jour. Ind. Inst. Sic., 1968, 1, 50, 1], we have discussed in this paper the problem of suction and injection and that of heat transfer for a viscous, incompressible fluid through a porous pipe of uniform circular cross-section, the wall of the pipe being maintained at constant temperature. The method utilises some important properties of differential equations and some transformations that enable the solution of the two-point boundary value and eigenvalue problems without using trial and error method. In fact, each integration provides us with a solution for a suction parameter and a Reynolds number without imposing the conditions of smallness on them. Investigations on non-Newtonian fluids and on other bounding geometries will be published elsewhere.  相似文献   

4.
We study a flow of fresh and salt water in a two dimensional axially symmetric coastal aquifer with a well on the central axis. The flow is governed by a nonlinear Darcy's law. We also show the behaviour of the solution when the out flow of salt water at well goes to 0. Received May 1999  相似文献   

5.
This work is aimed at describing the heat transfer on the peristaltic motion in a porous space. An incompressible and magnetohydrodynamic (MHD) viscous fluid is taken in an asymmetrical channel. Expressions of dimensionless stream function and temperature are obtained analytically by employing long wavelength and low Reynolds number assumptions. The influence of various parameters of interest is seen through graphs on pumping and trapping phenomena and temperature profile.  相似文献   

6.
The influence of temperature dependent viscosity and thermal conductivity on the transient Couette flow with heat transfer is studied. An external uniform magnetic field is applied perpendicular to the parallel plates and the Hall effect is taken into consideration. The fluid is acted upon by a constant pressure gradient. The two plates are kept at two constant but different temperatures and the viscous and Joule dissipations are considered in the energy equation. A numerical solution for the governing non-linear equations of motion and the energy equation is obtained. The effect of the Hall term and the temperature dependent viscosity and thermal conductivity on both the velocity and temperature distributions is examined.  相似文献   

7.
Unsteady two-layer liquid film flow on a horizontal rotating disk is analyzed using asymptotic method for small values of Reynolds number. This analysis of non-linear evolution equation elucidates how a two-layer film of uniform thickness thins when the disk is set in uniform rotation. It is observed that the final film thickness attains an asymptotic value at large time. It is also established that viscous force dominates over centrifugal force and upper layer thins faster than lower layer at large time.  相似文献   

8.
This paper deals with the study of the MHD flow of non-Newtonian fluid on a porous plate. Two exact solutions for non-torsionally generated unsteady hydromagnetic flow of an electrically conducting second order incompressible fluid bounded by an infinite non-conducting porous plate subjected to a uniform suction or blowing have been analyzed. The governing partial differential equation for the flow has been established. The mathematical analysis is presented for the hydromagnetic boundary layer flow neglecting the induced magnetic field. The effect of presence of the material constants of the second order fluid on the velocity field is discussed.  相似文献   

9.
The problem of free convection heat with mass transfer for MHD non-Newtonian Eyring–Powell flow through a porous medium, over an infinite vertical plate is studied. Taking into account the effects of both viscous dissipation and heat source. The temperature and concentration are of periodic variation. The governing non-linear partial differential equations of this phenomenon are transformed into non-linear algebraic system utilizing finite difference method. Numerical results for the velocity, temperature and concentration distributions as well as the skin friction, heat and mass transfer are obtained and reported in tabular form and graphically for different values of physical parameters of the problem. Also, the stability condition is studied.  相似文献   

10.
The steady Von Kármán flow and heat transfer of a non-Newtonian fluid is extended to the case where the disk surface admits partial slip. The constitutive equation of the non-Newtonian fluid is modeled by that for a Reiner-Rivlin fluid. The momentum equations give rise to highly nonlinear boundary value problem. Numerical solutions for the governing nonlinear equations are obtained over the entire range of the physical parameters. The effects of slip and non-Newtonian fluid characteristics on the velocity and temperature fields have been discussed in detail and shown graphically.  相似文献   

11.
The unsteady Couette–Poiseuille flow of an electrically conducting incompressible non-Newtonian viscoelastic fluid between two parallel horizontal non-conducting porous plates is studied with heat transfer considering the Hall effect. A sudden uniform and constant pressure gradient, an external uniform magnetic field that is perpendicular to the plates and uniform suction and injection through the surface of the plates are applied. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are taken into consideration. Numerical solutions for the governing momentum and energy equations are obtained using finite difference approximations. The effect of the Hall term, the parameter describing the non-Newtonian behavior, and the velocity of suction and injection on both the velocity and temperature distributions is examined.  相似文献   

12.
The present study investigates the effects of heat and mass transfer on peristaltic transport in a porous space with compliant walls. The fluid is electrically conducting in the presence of a uniform magnetic field. Analytic solution is carried out under long-wavelength and low-Reynolds number approximations. The expressions for stream function, temperature, concentration and heat transfer coefficient are obtained. Numerical results are graphically discussed for various values of physical parameters of interest.  相似文献   

13.
This article has been retracted. See retraction notice DOI: 10.1002/mma.850 . An unsteady flow and heat transfer in a porous medium of a viscous incompressible fluid over a rotating disk in an otherwise ambient fluid are studied. The unsteadiness in the flow field is caused by the angular velocity of the disk which varies with time. The new self‐similar solution of the Navier–Stokes and energy equations is obtained numerically. The solution obtained here is not only the solution of the Navier–Stokes equations, but also of the boundary layer equations. Also, for a simple scaling factor, it represents the solution of the flow and heat transfer in the forward stagnation‐point region of a rotating sphere or over a rotating cone. The asymptotic behaviour of the solution for a large porosity or for a large independent variable is also examined. The surface shear stresses in the radial and tangential directions and the surface heat transfer increase as the acceleration parameter increases. Also, the surface shear stress in the radial direction and the surface heat transfer decrease with increasing porosity, but the surface shear stress in the tangential direction increases. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
The analysis of convective flow and heat transfer of a viscous heat generating fluid past a uniformly moving, infinite, vertical, porous plate has been made systematically with a view to throw adequate light on the effects of the plate-motion and the presence of heat generation/absorption on the flow and heat transfer characteristics. The equations of conservation of momentum and energy which govern the flow and heat transfer of the said problem have been solved numerically by the method of Runge-Kutta-Gill. The numerical results thus obtained for the flow and heat transfer characteristics have revealed many an interesting behaviour, of the skin friction and the rate of heat transfer coefficient at the plate.  相似文献   

15.
The effect of heat and mass transfer on free convective flow of a visco-elastic incompressible electrically conducting fluid past a vertical porous plate through a porous medium with time dependant oscillatory permeability and suction in the presence of a uniform transverse magnetic field, heat source and chemical reaction has been studied in this paper. The novelty of the present study is to analyze the effect of chemical reaction, time dependant fluctuative suction and permeability of the medium on a visco-elastic fluid flow. It is interesting to note that presence of sink contributes to oscillatory motion leading to flow instability. Further it is remarked that presence of heat source and low rate of thermal diffusion counteract each other in the presence of reacting species.  相似文献   

16.
The effects of Hall current and heat transfer on the rotating flow of a second grade fluid past a porous plate with variable suction are examined. The medium considered is porous and suction and external flow velocities vary periodically. The plate is assumed to be at a higher temperature than the fluid. The influences of the Hall parameter and porosity of the medium have been seen and discussed on the velocity and temperature profiles. Moreover, these influences have also been seen on the drag and lateral stress. Finally, the obtained solutions are also compared with the previous studies in the literature and found quite agreement.  相似文献   

17.
This paper aims to present complete analytic solution to heat transfer of a micropolar fluid through a porous medium with radiation. Homotopy analysis method (HAM) has been used to get accurate and complete analytic solution. The analytic solutions of the system of nonlinear ordinary differential equations are constructed in the series form. The convergence of the obtained series solutions is carefully analyzed. The velocity and temperature profiles are shown and the influence of coupling constant, permeability parameter and the radiation parameter on the heat transfer is discussed in detail. The validity of our solutions is verified by the numerical results (fourth-order Runge–Kutta method and shooting method).  相似文献   

18.
The present work investigates the effects of disks contracting, rotation and heat transfer on the viscous fluid between heated contracting rotating disks. By introducing the Von Kármán type similarity transformations through which we reduced the highly nonlinear partial differential equation to a system of ordinary differential equations. This system of differential equations with appropriate boundary conditions is responsible for the flow behavior between large but finite coaxial rotating and heated disks. It is important to note that the lower disk is rotating with angular velocity Ω while the upper one with , the disks are also contracting and the temperatures of the upper and lower disks are T1 and T0, respectively. The agents which driven the flow are the contraction and also the rotation of the disks. On the other hand the velocity components and especially radial component of velocity strongly influence the temperature distribution inside the flow regime. The basic equations which govern the flow are the Navier Stokes equations with well known continuity equation for incompressible flow. The final system of ordinary differential equations is then solved numerically with given boundary conditions. In addition, the effect of physical parameters, the Reynolds number (Re), the wall contraction ratio (γ) and the rotation ratio (S) on the velocity and pressure gradient, as well as, the effect of Prandtl number (Pr) on temperature distribution are also observed.  相似文献   

19.
The paper deals with the study of the flow of an incompressible electrically conducting visco-elastic fluid referred to as Walter’s liquid B over a porous non-isothermal stretching sheet using quasilinearization technique adopting a numerical approach. The sheet is assumed to stretch uni-directionally and the fluid above the sheet is at rest if there were no stretching. The temperature profiles are obtained numerically and these are displayed through graphs for diverse values of Prandtl number, visco-elastic parameter, magnetic parameter, source/sink parameter, wall temperature parameter and wall heat flux parameter. The results are compared with those available in literature obtained through analytical procedures and are seen to be in good agreement.  相似文献   

20.
In this article, a powerful analytical method, called the Homotopy Analysis Method (HAM) is introduced to obtain the exact solutions of heat transfer equation of a non-Newtonian fluid flow in an axisymmetric channel with a porous wall for turbine cooling applications. The HAM is employed to obtain the expressions for velocity and temperature fields. Tables are presented for various parameters on the velocity and temperature fields. These results are compared with the solutions which are obtained by Numerical Methods (NM). Also the convergence of the obtained HAM solution is discussed explicitly. These comparisons show that this analytical method is strongly powerful to solve nonlinear problems arising in heat transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号