首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large entropy fluctuations in a nonequilibrium steady state of classical mechanics are studied in extensive numerical experiments on a simple two-freedom model with the so-called Gauss time-reversible thermostat. The local fluctuations (on a set of fixed trajectory segments) from the average heat entropy absorbed in the thermostat are found to be non-Gaussian. The fluctuations can be approximately described by a two-Gaussian distribution with a crossover independent of the segment length and the number of trajectories (“particles”). The distribution itself does depend on both, approaching the single standard Gaussian distribution as any of those parameters increases. The global time-dependent fluctuations are qualitatively different in that they have a strict upper bound much less than the average entropy production. Thus, unlike the equilibrium steady state, the recovery of the initial low entropy becomes impossible after a sufficiently long time, even in the largest fluctuations. However, preliminary numerical experiments and the theoretical estimates in the special case of the critical dynamics with superdiffusion suggest the existence of infinitely many Poincaré recurrences to the initial state and beyond. This is a new interesting phenomenon to be further studied together with some other open questions. The relation of this particular example of a nonequilibrium steady state to the long-standing persistent controversy over statistical “irreversibility”, or the notorious “time arrow”, is also discussed. In conclusion, the unsolved problem of the origin of the causality “principle” is considered.  相似文献   

2.
3.
Relativistic resonances and decaying states are described by representations of Poincaré transformations, similar to Wigner's definition of stable particles. To associate decaying state vectors to resonance poles of the S‐matrix, the conventional Hilbert space assumption (or asymptotic completeness) is replaced by a new hypothesis that associates different dense Hardy subspaces to the in‐ and out‐scattering states. Then one can separate the scattering amplitude into a background amplitude and one or several “relativistic Breit‐Wigner” amplitudes, which represent the resonances per se. These Breit‐Wigner amplitudes have a precisely defined lineshape and are associated to exponentially decaying Gamow vectors which furnish the irreducible representation spaces of causal Poincaré transformations into the forward light cone.  相似文献   

4.
《Physics letters. A》1988,129(1):9-16
Cellular automata (CA) corresponding to hamiltonian mappings are proposed. The features of such CA are classified into the linear wave, superposed complex, and ergodic-like. It is shown that most nontrivial symplectic CA show the ergodic behavior. Spatio-temporal patterns, Poincaré's recurrence time, spatial entropies and Poincaré maps are calculated to confirm the ergodicity for the check of “ergodicity”. The variational principle for actions is discussed.  相似文献   

5.
张永祥  孔贵芹  俞建宁 《物理学报》2008,57(10):6182-6187
建立了振动筛系统的动力学模型,推导出了其周期运动的Poincaré 映射,基于Poincaré 映射方法着重研究了系统Flip-Hopf-Hopf余维三分岔、三次强共振条件下的Hopf-Hopf余维三分岔以及三种非常规的混沌演化过程.研究结果表明,此两类余维三分岔点附近的动力学行为变得更加复杂和新颖,在分岔点附近出现了三角形吸引子、3T2环面分岔以及“五角星型”、“轮胎型”概周期吸引子,揭示了环面爆破、环面倍化以及T2环面分岔向混沌演化的过程,这些结果对于振动筛系统的动力学优化设计提供了理论参考. 关键词: 余维三分岔 非常规混沌演化 T2环面分岔')" href="#">T2环面分岔  相似文献   

6.
A prototype equation to the Lorenz model of turbulence contains just one (second-order) nonlinearity in one variable. The flow in state space allows for a “folded” Poincaré map (horseshoe map). Many more natural and artificial systems are governed by this type of equation.  相似文献   

7.
It is shown that if the phase space of general relativity is defined so as to contain the trajectories representing solutions of the equations of motion then, for asymptotically flat spaces, the Hamiltonian does not vanish but its value is given rather by a nonzero surface integral. If the deformations of the surface on which the state is defined are restricted so that the surface moves asymptotically parallel to itself in the time direction, then the surface integral gives directly the energy of the system, prior to fixing the coordinates or solving the constraints. Under more general conditions (when asymptotic Poincaré transformations are allowed) the surface integrals giving the total momentum and angular momentum also contribute to the Hamiltonian. These quantities are also identified without reference to a particular fixation of the coordinates. When coordinate conditions are imposed the associated reduced Hamiltonian is unambiguously obtained by introducing the solutions of the constraints into the surface integral giving the numerical value of the unreduced Hamiltonian. In the present treatment there are therefore no divergences that cease to be divergences after coordinate conditions are imposed. The procedure of reduction of the Hamiltonian is explicity carried out for two cases: (a) Maximal slicing, (b) ADM coordinate conditions.A Hamiltonian formalism which is manifestly covariant under Poincaré transformations at infinity is presented. In such a formalism the ten independent variables describing the asymptotic location of the surface are introduced, together with corresponding conjugate momenta, as new canonical variables in the same footing with the gij, πij. In this context one may fix the coordinates in the “interior” but still leave open the possibility of making asymptotic Poincaré transformations. In that case all ten generators of the Poincaré group are obtained by inserting the solution of the constraints into corresponding surface integrals.  相似文献   

8.
We introduce a new method for obtaining quantitative results in stochastic homogenization for linear elliptic equations in divergence form. Unlike previous works on the topic, our method does not use concentration inequalities (such as Poincaré or logarithmic Sobolev inequalities in the probability space) and relies instead on a higher (Ck, k ≥ 1) regularity theory for solutions of the heterogeneous equation, which is valid on length scales larger than a certain specified mesoscopic scale. This regularity theory, which is of independent interest, allows us to, in effect, localize the dependence of the solutions on the coefficients and thereby accelerate the rate of convergence of the expected energy of the cell problem by a bootstrap argument. The fluctuations of the energy are then tightly controlled using subadditivity. The convergence of the energy gives control of the scaling of the spatial averages of gradients and fluxes (that is, it quantifies the weak convergence of these quantities), which yields, by a new “multiscale” Poincaré inequality, quantitative estimates on the sublinearity of the corrector.  相似文献   

9.
The general structure of the bound state problem posed by a Poincaré-invariant quantum field theory is discussed. It is pointed out that the only present-day method which promises to solve this problem is a nonperturbative regularisation and a check of scaling in the continuum limit. It is demonstrated that perturbation procedures like the Green's function methods of “quantum hadro-dynamics” are inconsistent with respect to covariance and do not solve the bound state problem. As a consequence we propose to use for an effective many-hadron theory a regularised Hamiltonian including form factors, the arbitrariness of which may be essentially restricted by a “minimal relativity” condition. Examples for such effective theories are discussed.  相似文献   

10.
Barbour’s interpretation of Mach’s principle led him to postulate that gravity should be formulated as a dynamical theory of spatial conformal geometry, or in his terminology, “shapes.” Recently, it was shown that the dynamics of General Relativity can indeed be formulated as the dynamics of shapes. This new Shape Dynamics theory, unlike earlier proposals by Barbour and his collaborators, implements local spatial conformal invariance as a gauge symmetry that replaces refoliation invariance in General Relativity. It is the purpose of this paper to answer frequent questions about (new) Shape Dynamics, such as its relation to Poincaré invariance, General Relativity, Constant Mean (extrinsic) Curvature gauge, earlier Shape Dynamics, and finally the conformal approach to the initial value problem of General Relativity. Some of these relations can be clarified by considering a simple model: free electrodynamics and its dual shift symmetric formulation. This model also serves as an example where symmetry trading is used for usual gauge theories.  相似文献   

11.
12.
13.
It is shown that both covariant harmonic oscillator formalism and quantum field theory are based on common physical principles which include Poincaré covariance, Heisenberg's space-momentum uncertainty relation, and Dirac's “C-number” time-energy uncertainty relation. It is shown in particular that the oscillator wave functions are derivable from the physical principles which are used in the derivation of the Klein-Nishina formula.  相似文献   

14.
15.
《Nuclear Physics B》1986,263(2):309-324
Within a framework of the non-linear realization, we investigate the transformation law and the effective lagrangian when superconformal symmetry is spontaneously broken down to super-Poincaré symmetry. We show that the determinant of the “supervierbein” provides an effective lagrangian which describes the interaction among the dilaton, the “axion” and the dilatino. We also briefly discuss the case in which the superconformal group is broken down to the Poincaré group.  相似文献   

16.
Soft matter, like colloidal suspensions and surfactant gels, exhibit strong response to modest external perturbations. This paper reviews our recent experiments on the nonlinear flow behaviour of surfactant worm-like micellar gels. A rich dynamic behaviour exhibiting regular, quasi-periodic, intermittency and chaos is observed. In particular, we have shown experimentally that the route to chaos is via Type-II intermittency in shear thinning worm-like micellar solution of cetyltrimethylammonium tosylate where the strength of flow-concentration coupling is tuned by the addition of sodium chloride. A Poincaré first return map of the time series and the probability distribution of laminar length between burst events show that our data are consistent with Type-II intermittency. The existence of a ‘Butterfly’ intensity pattern in small angle light scattering (SALS) measurements performed simultaneously with the rheological measurements confirms the coupling of flow to concentration fluctuations in the system under study. The scattered depolarised intensity in SALS, sensitive to orientational order fluctuations, shows the same time-dependence (like intermittency) as that of shear stress.  相似文献   

17.
Probir Roy 《Pramana》2017,88(4):64
We present an instance from nonequilibrium statistical mechanics which combines increase in entropy and finite Poincaré recurrence time. The model we consider is a variation of the well-known Kac’s ring where we consider balls of four colours. As is known, Kac introduced this model where balls arranged between lattice sites, in each time step, move one step clockwise. The colour of the balls change as they cross marked sites. This very simple example rationalize the increase in entropy and recurrence. In our variation, the interesting quantity which counts the difference in the number of balls of different colours is shown to reduce to a set of linear equations if the probability of change of colour is symmetric among a pair of colours. The transfer matrix turns out to be non-Hermitian with real eigenvalues, leading to all colours being equally likely for long times, and a monotonically varying entropy. The new features appearing due to four colours is very instructive.  相似文献   

18.
We review the theory of interacting topological fluctuations in the ground state of quantum gauge theories, the so called “instanton liquid”. First we outline some known phenomenological facts, both coming from “real” experiments (for QCD) and from the lattice data. Then we describe interaction of instantons and the statistical mechanics of their ensemble for theSU(2) gauge theory. The very essential role of the light quarks is considered using numerical experiments. One of the main conclusions is that instantons induce chiral symmetry breaking in vacuum, but as they are suppressed (e.g. by the nonzero temperature) this symmetry is restored. Phase transition is found to be very strong and of the first order.  相似文献   

19.
An analysis is made of characteristics of the superconducting state (s-and d-pairing) using a simple, exactly solvable model of the pseudogap state produced by fluctuations of the short-range order (such as antiferromagnetic) based on a Fermi surface model with “hot” sections. It is shown that the superconducting gap averaged over these fluctuations is nonzero at temperatures higher than the mean-field superconducting transition temperature T c over the entire sample. At temperatures T > T c superconductivity evidently exists in isolated sections (“ drops”). Studies are made of the spectral density and the density of states in which superconducting characteristics exist in the range T > T c however, in this sense the temperature T = T c itself is no different in any way. These anomalies show qualitative agreement with various experiments using underdoped high-temperature superconducting cuprates.  相似文献   

20.
We investigate the Poincaré transformation dynamics describing the stochastic motion of a relativistic electron in the regular electrostatic field of a wave packet. The conditions of local instability of the phase trajectories are determined: it is shown that the system is a structurally stable Y system with an attracting set of the hyperbolic type. The relationship between the dynamics at the strange attractor characterized by Lyapunov indices and its statistical structure described by the Kolmogorov entropy is discussed. The fractal dimension of the phase space of the system is determined. The results of a numerical simulation of the effect are presented and discussed. Altai State University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 15–20, June, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号