首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanotubes (CNTs) arrays grown by microwave plasma enhanced chemical vapor deposition (MPCVD) method was transferred onto the substrate covered with graphene layer obtained by thermal chemical vapor deposition (CVD) technology. The graphene buffer layer provides good electrical and thermal contact to the CNTs. The field emission characteristics of this hybrid structure were investigated in this study. Compared with the CNTs arrays directly grown on the silicon substrate, the hybrid emitter shows better field emission performance, such as high emission current and long-term emission stability. The presence of this graphene layer was shown to improve the field emission behavior of CNTs. This work provides an effective way to realize stable field emission from CNTs emitter and similar hybrid structures.  相似文献   

2.
韩林芷  赵占霞  马忠权 《物理学报》2014,63(24):248103-248103
石墨烯作为一种二维sp2杂化碳的同素异形体,具有优良的电学、光学、热学及力学等性质.产业化应用石墨烯要求其具有大的尺寸且性质均一.化学气相沉积法(CVD)的出现为制备大尺寸、高质量的石墨烯提供了可能.本文结合近几年CVD法制备石墨烯的研究进展,综述了影响大尺寸、单晶石墨烯制备的工艺参数,包括衬底选择与预处理、碳源与辅助气体流量调控、腔体温度和压力控制、沉积时间以及降温速率设定等.最后展望了制备大尺寸单晶石墨烯的研究方向.  相似文献   

3.
Physics of the Solid State - Electrodeposition of cobalt on monolayer graphene synthesized by chemical vapor deposition produces Co–CoO/graphene composite structures, which is accompanied by...  相似文献   

4.
Growth of epitaxial graphene (EG) on silicon carbide (SiC) is regarded as one of the most effective routes to high-quality graphene towards practical applicability. We try to build up a model to illuminate the nucleation process of EG on SiC by thermal decomposition. The model is derived from some experimental results and discloses that surface diffusion plays an important role in the nucleation. For the chemical vapor deposition process used, the organic gas as carbon precursor enables carbon deposition quickly for supporting the growth of high-quality graphene via vapor transformation, so that the nucleated and final graphene becomes almost stress-free and mimics the free-standing graphene. Our findings have a potential in preparing high-quality graphene by controlling the nucleation conditions.  相似文献   

5.
We present a simple, low-cost and high-effective method for synthesizing high-quality, large-area graphene using radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) on SiO2/Si substrate covered with Ni thin film at relatively low temperatures (650 °C). During deposition, the trace amount of carbon (CH4 gas flow rate of 2 sccm) is introduced into PECVD chamber and the deposition time is only 30 s, in which the carbon atoms diffuse into the Ni film and then segregate on its surface, forming single-layer or few-layer graphene. After deposition, Ni is removed by wet etching, and the obtained single continuous graphene film can easily be transferred to other substrates. This investigation provides a large-area, low temperature and low-cost synthesis method for graphene as a practical electronic material.  相似文献   

6.
The thermal stability in air of graphene synthesized by either chemical vapor deposition or mechanical cleavage is studied. It is found that single layer graphene prepared by both methods starts to show defects at ~500 °C, indicated by the appearance of a disorder‐induced Raman D peak. The defects are initially sp3 type and become vacancy like at higher temperature. On the other hand, bilayer graphene shows better thermal stability, and the D peak appears at ~600 °C. These results are quite different from those annealing in vacuum and controlled atmosphere. Raman images show that the defects in chemical vapor deposition graphene are not homogeneous, whereas those in mechanical cleavage graphene are uniformly distributed across the whole sample. The factors that affect the thermal stability of graphene are discussed. Our results could be important for guiding the future electronics process and chemical decoration of graphene. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Rinkevich  A. B.  Korkh  Yu. V.  Klepikova  A. S.  Tolmacheva  E. A. 《Doklady Physics》2020,65(10):362-365
Doklady Physics - The problem of efficiency of using electrical properties for characterizing graphene structures obtained by chemical vapor deposition and formed on substrates of various materials...  相似文献   

8.
The epitaxial growth of graphene on transition metal surfaces by ex situ deposition of liquid precursors (LPD, liquid phase deposition) is compared to the standard method of chemical vapor deposition (CVD). The performance of LPD strongly depends on the particular transition metal surface. For Pt(111), Ir(111) and Rh(111), the formation of a graphene monolayer is hardly affected by the way the precursor is provided. In the case of Ni(111), the growth of graphene strongly depends on the applied synthesis method. For CVD of propene on Ni(111), a 1 × 1 structure as expected from the vanishing lattice mismatch is observed. However, in spite of the nearly perfect lattice match, a multi-domain structure with 1 × 1 and two additional rotated domains is obtained when an oxygen-containing precursor (acetone) is provided ex situ.  相似文献   

9.
Uniform mixing of ceramic powder and graphene is of great importance for producing ceramic matrix composite. In this study, graphene nanowalls(GNWs) are directly deposited on the surface of Al_2 O_3 and Si_3 N_4 powders using chemical vapor deposition system to realize the uniform mixing. The morphology and the initial stage of the growth process are investigated. It is found that the graphitic base layer is initially formed parallel to the powder surface and is followed by the growth of graphene nanowalls perpendicular to the surface. Moreover, the lateral length of the graphene sheet could be well controlled by tuning the growth temperature. GNWs/Al_2 O_3 powder is consolidated by using sparking plasma sintering method and several physical properties are measured. Owing to the addition of GNWs, the electrical conductivity of the bulk alumina is significantly increased.  相似文献   

10.
Here, we report tunable complex optical properties of one dimensional photonic crystal covered by graphene layer, as a new optical material, in the visible spectral range. For this purpose, we fabricate two different structure as one dimensional photonic crystal, with photonic band gap which centered at 650 nm, by electron gun deposition method and the chemical vapor deposition has been used to synthesize graphene top layer. To demonstrate the optical properties of our two photonic crystals affected by graphene layer, we use the reflectance spectra of the samples as a function of incidence angle. Because the sufficient sensitivity of the refractive indices of the samples, we extract the real and imaginary part of these parameters in all of visible region as a tunable complex refractive index. Our results show that we have sufficient change due to excited plasmons in graphene layer by Bloch wave of photonic crystal which is very useful for sensor applications.  相似文献   

11.
In this paper, we present a novel method of using graphene for sensing the inhomogeneous strain due to the surface relief in FeNiCoTi shape memory alloy. In the experiment, a large sheet of graphene fabricated by chemical vapor deposition was transferred onto the FeNiCoTi substrate. The flat surface of the substrate would become wrinkled due to the surface relief formed during the FeNiCoTi substrate phase transformation, meanwhile loading a tensile strain on the surface graphene. It is found that the 2D Raman peak of graphene demonstrates a significant red shift due to the tensile strain. The different colors exhibited in the Raman mapping image of the graphene directly displayed the strain distribution information across the surface. In the future, we may alter to quantitatively analyze the surface relief by using Raman spectroscopy instead of the atomic force microscopy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
吴春霞  苏龙兴  何自娟  宋刑  孙青峰 《发光学报》2015,36(12):1370-1374
采用化学气相沉积(CVD)方法制备了具有良好结晶质量和(002)择优取向的ZnO微米棒。在此基础上,选取单根ZnO微米棒,将其部分搁置于单层石墨烯表面。光致发光(PL)谱结果表明,石墨烯不仅增强了ZnO微米棒的紫外发光强度,同时也对光场在ZnO微米棒中的分布有很大的限域作用。分析认为这是由于石墨烯的表面等离子效应引起了ZnO微米棒与石墨烯之间的光-物质相互作用导致的。在拉曼(Raman)光谱中,石墨烯对ZnO微米棒的E2(L)声子振动模和E2(H)声子振动模的强度具有明显的减弱效应,这进一步证明二者之间存在光子的传输和电荷的转移,从而导致其晶格振动受到抑制。  相似文献   

13.
高质量大面积石墨烯的化学气相沉积制备方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王文荣。  周玉修  李铁  王跃林  谢晓明 《物理学报》2012,61(3):38702-038702
石墨烯因其奇特的能带结构和优异的物理性能而成为近年来大家研究的热点, 但是目前单层石墨烯的质量与尺寸制约了其实际应用的发展. 本文采用常压化学气相沉积(CVD)方法, 基于铜箔衬底, 利用甲烷作为碳源制备了高质量大面积的单层与多层石墨烯. 研究发现: 高温度、稀薄的甲烷浓度、较短的生长时间以及合适的气体流速是制备高质量、大面积石墨烯的关键. Raman光谱, 扫描电子显微镜、透射电子显微镜等表征结果表明: 制备的石墨烯主要为单层, 仅铜箔晶界处有少量多层石墨烯. 电学测试表明CVD制备的石墨烯在低温时呈现出较明显的类半导体特性; 薄膜电阻随外界磁场的增大而减小.  相似文献   

14.
Changes in properties of graphene grown by chemical vapor deposition (CVD) with water adsorbate removal from the graphene–SiO2/Si substrate interface using an organic material, i.e., acetone, are studied. It is found that acetone vapor suppresses grapheme structuring under low-intensity nanosecond laser radiation (wavelength λ = 532 nm). It is found that the electron work function in graphene decreases by ~0.2 eV, which is presumably due to a decrease in the water adsorbate layer thickness at the mentioned interface.  相似文献   

15.
Large-area boron nanowire(BNW) films were fabricated on the Si(111) substrate by chemical vapor deposition(CVD). The average diameter of the BNWs is about 20 nm, with lengths of 5–10 μm. Then, graphene-capped boron nanowires(GC-BNWs) were obtained by microwave plasma chemical vapor deposition(MPCVD). Characterization by scanning electron microscopy indicates that few-layer graphene covers the surface of the boron nanowires. Field emission measurements of the BNWs and GC-BNW films show that the GC-BNW films have a lower turn-on electric field than the BNW films.  相似文献   

16.
We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra‐scaled (10 nm) high‐κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The synthesis of high quality single layer graphene on rhodium, g/Rh(111), is reported. The graphene layers are grown at 1060 K by low pressure chemical vapor deposition (CVD) using 3-pentanone as a precursor molecule. The presented growth technique shows an easy high quality production method for epitaxial graphene monolayers. The chemical composition and structural properties of such self-assembled monolayers were characterized by X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED). Scanning Tunneling Microscopy (STM) confirms the formation of a 3 nm super cell and a unique surface morphology which establishes the potential of g/Rh(111) as a template for molecules.  相似文献   

18.
The properties of single-layer graphene are strongly affected by metal adsorbates and clusters on graphene. Here, we study the effect of a thin layer of chromium (Cr) and titanium (Ti) metals on chemical vapor deposition (CVD)-grown graphene by using Raman spectroscopy and transport measurements. The Raman spectra and transport measurements show that both Cr and Ti metals affect the structure as well as the electronic properties of the CVD-grown graphene. The shift of peak frequencies, intensities and widths of the Raman bands are analyzed after the deposition of metal films of different thickness on CVD-grown graphene. The shifts in G and 2D peak positions indicate the doping effect of graphene by Cr and Ti metals. While p-type doping was observed for Cr-coated graphene, n-type doping was observed for Ti-coated graphene. The doping effect is also confirmed by measuring the gate voltage dependent resistivity of graphene. We have also found that annealing in Ar atmosphere induces a p-type doping effect on Cr- or Ti-coated CVD-grown graphene.  相似文献   

19.
The growth of high-quality graphene on copper substrates has been intensively investigated using chemical vapor deposition (CVD). It, however, has been considered that the growth mechanism is different when graphene is synthesized using a plasma CVD. In this study, we demonstrate a dual role of hydrogen for the graphene growth on copper using an inductively coupled plasma (ICP) CVD. Hydrogen activates surface-bound carbon for the growth of high-quality monolayer graphene. In contrast, the role of an etchant is to manipulate the distribution of the graphene grains, which significantly depends on the plasma power. Atomic-resolution transmission electron microscopy study enables the mapping of graphene grains, which uncovers the distribution of grains and the number of graphene layers depending on the plasma power. In addition, the variation of electronic properties of the synthesized graphene relies on the plasma power.  相似文献   

20.
The high contact resistance of organic thin film transistors (OTFTs), due to the work function difference between metal electrode and organic channel, seriously decreases the electrical properties. Graphene electrode could reduce the contact resistance and improve the electrical performance of OTFTs. However, the high chemical vapor deposition (CVD) temperature (900–1000 °C) limits the available OTFT substrate in the case of direct graphene growth on S/D metal electrodes. Furthermore, the application of a transferred graphene electrode induces significant problems due to the transfer process. In this work, thin graphite sheet was directly grown on a metal electrode by the inductively coupled plasma-chemical vapor deposition (ICP-CVD) method at as low temperature as 400, 500 °C. We show that OFETs with thin graphite sheet/metal, grown at 400, 500 °C, exhibit much lower contact resistance than OFETs with metal-only electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号