首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doped zinc oxide thin films are grown on glass substrate at room temperature under oxygen atmosphere, using pulsed laser deposition (PLD). O2 pressure below 1 Pa leads to conductive films. A careful characterization of the film stoichiometry and microstructure using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) concludes on a decrease in crystallinity with Al and Ga additions (≤3%). The progressive loss of the (0 0 2) orientation is associated with a variation of the c parameter value as a function of the film thickness and substrate nature. ZnO:Al and ZnO:Ga thin films show a high optical transmittance (>80%) with an increase in band gap from 3.27 eV (pure ZnO) to 3.88 eV and 3.61 eV for Al and Ga doping, respectively. Optical carrier concentration, optical mobility and optical resistivity are deduced from simulation of the optical data.  相似文献   

2.
We report 63,65Cu spin–lattice relaxation rates measured by nuclear quadrupole resonance (NQR) in the delafossite compound CuYO2 and CuYO2:Ca over a temperature range from 200 to 450 K. CuYO2:Ca is a prototype transparent oxide exhibiting p-type electrical conductivity. Relaxation rates in CuYO2:Ca are enhanced by one to two orders of magnitude relative to undoped material, exhibit much stronger temperature dependence, and contain contributions from magnetic and quadrupolar relaxation mechanisms with roughly equal strengths. Relaxation in undoped CuYO2 is of purely quadrupolar origin and is attributed to interactions with lattice phonons. The main focus of this paper is the magnetic contribution to the relaxation rate in CuYO2:Ca which is attributed to the hyperfine fields of carriers. It is argued that the dynamics of the hyperfine field are dominated by the hopping rate for carrier transfers between neighboring atoms in the copper planes of the delafossite structure. Comparison of the magnetic relaxation rates with the DC conductivity permits an estimate of the carrier concentration and mobility.  相似文献   

3.
4.
We study theoretically the temperature dependence of the optical-absorption coefficient, for the visible region, in thin films of transparent conducting oxides by using the well-known Varshni approach relative to optical band-gap energy. Zero absorption is considered and an approximate formula for the coefficient of visible absorption is derived when photon energy is near the band-gap energy, that is, when absorption is negligible.  相似文献   

5.
Existing defect models for In(2)O(3) and ZnO are inconclusive about the origin of conductivity, nonstoichiometry, and coloration. We apply systematic corrections to first-principles calculated formation energies Delta H, and validate our theoretical defect model against measured defect and carrier densities. We find that (i) intrinsic acceptors ("electron killers") have a high Delta H explaining high n-dopability, (ii) intrinsic donors ("electron producers") have either a high Delta H or deep levels, and do not cause equilibrium-stable conductivity, (iii) the O vacancy V(O) has a low Delta H leading to O deficiency, and (iv) V(O) has a metastable shallow state, explaining the paradoxical coexistence of coloration and conductivity.  相似文献   

6.
Transparent conducting indium tin oxide/Au/indium tin oxide (ITO) multilayered films were deposited on unheated polycarbonate substrates by magnetron sputtering. The thickness of the Au intermediated film varied from 5 to 20 nm. Changes in the microstructure, surface roughness and optoelectrical properties of the ITO/Au/ITO films were investigated with respect to the thickness of the Au intermediated layer. X-ray diffraction measurements of ITO single layer films did not show characteristic diffraction peaks, while ITO/Au/ITO films showed an In2O3 (2 2 2) characteristic diffraction peak. The optoelectrical properties of the films were also dependent on the presence and thickness of the Au thin film. The ITO 50 nm/Au 10 nm/ITO 40 nm films had a sheet resistance of 5.6 Ω/□ and an average optical transmittance of 72% in the visible wavelength range of 400-700 nm. Consequently, the crystallinity, which affects the optoelectrical properties of ITO films, can be enhanced with Au intermediated films.  相似文献   

7.
Transparent conductive Al-doped zinc oxide (AZO) films with highly (0 0 2)-preferred orientation were deposited on quartz substrates at room temperature by RF magnetron sputtering. Optimization of deposition parameters was based on RF power, Ar pressure in the vacuum chamber, and distance between the target and substrate. The structural, electrical, and optical properties of the AZO thin films were investigated by X-ray diffraction, Hall measurement, and optical transmission spectroscopy. The 250 nm thickness AZO films with an electrical resistivity as low as 4.62 × 10−4 Ω cm and an average optical transmission of 93.7% in the visible range were obtained at RF power of 300 W, Ar flow rate of 30 sccm, and target distance of 7 cm. The optical bandgap depends on the deposition condition, and was in the range of 3.75-3.86 eV. These results make the possibility for light emitting diodes (LEDs) and solar cells with AZO films as transparent electrodes, especially using lift-off process to achieve the transparent electrode pattern transfer.  相似文献   

8.
Aluminium-doped zinc oxide thin films were grown on glass substrates using hot wall deposition technique. The method involved evaporation of high purity ZnO and Al from respective sources surrounded by alumina cylinder held at high temperature. The additional thermal energy supplied by the hot wall to the particles colliding on it helps in its migration resulting in highly uniform films. XRD studies show the growth of c-axis oriented near single phase ZnO films having about 90% transmittance in the visible range and resistivity of the order of 10−4Θ cm.  相似文献   

9.
We propose a new crystal growth method and a new valence control method to fabricate a low-resistive p-type and transparent conducting oxides of Delafossite CuAlO2 based on ab initio electronic structure calculation using a super-cell FLAPW method. We propose a Cu-vacancy-acceptor doping method by decreasing a Cu-vapor pressure in order to increase a Cu-vacancy concentration. We also propose the Mg- or Be-impurity doping method at the Al-site using the thermal non-equilibrium crystal-growth method with extreme conditions in MBE or MOCVD by decreasing an Al-vapor pressure and avoiding the Mg- or Be-atom doping at the Cu-site by increasing a Cu-vapor pressure.  相似文献   

10.
Transparent conducting zirconium-doped zinc oxide (ZnO:Zr) films were firstly deposited on polyethylene terephthalate (PET) substrates with ZnO buffer layers by DC magnetron sputtering at room temperature. Dependence of physical properties of ZnO:Zr films on deposition pressure was systematically studied. All the deposited films were polycrystalline and (1 0 0) oriented. When deposition pressure increases from 1 to 2.5 Pa, the crystallinity of the films improves and the resistivity decreases. While deposition pressure increases from 2.5 to 3.5 Pa, the crystallinity of the films deteriorates and the resistivity increases. The lowest resistivity of 1.8 × 10−3 Ω cm was obtained for the films deposited at the optimum deposition pressure of 2.5 Pa. All the films present a high transmittance of above 86% in the wavelength range of the visible spectrum.  相似文献   

11.
A. Ovenston  J. R. Walls 《Ionics》1997,3(1-2):56-66
A test bed for development of catalysts in a temperature programmed reactor is described. The effluent species are monitored in real time. Such data are collected into spreadsheet arrays which can be interrogated to yield kinetic data. An appropriate reactor design can therefore proceed directly from laboratory measurements to generate whole plant simulation analysis and commercial evaluation. For the oxidative coupling of methane, the hydrocarbon to oxygen ratio in the feed is of particular importance since the state of oxidation plays a significant role in determining the selectivity of the catalyst to the optimum product distribution. Homogeneous gas phase reactions may also occur at high temperatures, hence the reactor volume both upstream and downstream of the catalyst must also be considered. The stability of the catalyst under reactor conditions can be further assessed by following temperature programmed, thermal gravimetric and differential thermal analyses in diverse oxidizing, reducing or reaction atmospheres. Temperature programmed AC electrical measurements also give further insight into changes in the catalyst both at the surface and in the bulk as chemical reactions proceed. Examples of these techniques on a variety of mixed oxides such as Li-Ni-Co-O, La-Sr-Co-Fe-O and K-β′' alumina are presented. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland  相似文献   

12.
Transparent conducting SnO2 thin films with a thickness between 1000–2000 Å were deposited on glass, quartz and silicon substrates using standard pulsed laser deposition techniques with two different targets (Sri and SnO2) and with three different laser wavelengths (1.06, 0.532 and 0.266 ) from a Q-switched Nd: YAG laser. Tin dioxide films with optical transmission over most of the visible spectrum exceeding 80% were obtained using a Sn target and a background oxygen pressure of 20 Pa. The electrical resistivity () depended strongly on the substrate temperature during deposition, with the lowest values of of about 10–2 -cm obtained when the substrate was maintained at 400°C during deposition. Using SnO2 targets, predominantly amorphous phase SnO2 films were deposited on Si substrates and then transformed into polycrystalline Sn3O4 by laser induced crystallization ( = 1.06 m). Whereas these later films were essentially non-conducting as deposited ( > 400 -cm), the electrical resistivity was permanently reduced after laser induced crystallization by a factor greater than 1000 to a value of approximately 4 × 10–1 -cm.  相似文献   

13.
Summary Excimer laser-induced photochemistry of dimetylzinc (DMZn) and diethylzinc (DEZn) has been investigated by multiphoton ionization time-of-flight mass spectroscopy. After the results achieved, DEZn was chosen as precursor compound for zinc film photodeposition. The organometallic was photolyzed by a focussed KrF excimer laser beam perpendicularly impinging onto a quartz substrate. Localized zinc deposition with thicknesses in the range (300⋎3000) ? has been obtained and the deposition process has been investigated by monitoring the time evolution of the fraction of a He-Ne laser beam transmitted by the growing zinc film.
Riassunto Le reazioni fotochimiche indotte nelle molecole di dimetilzinco e di dietilzinco dalla radiazione emessa dal laser ad eccimeri sono state investigate utilizzando la tecnica della ionizzazione multifotonica abbinata a spettrometria di massa a tempo di volo. In base ai risultati ottenuti il dietilzinco è stato scelto come composto precursore per la fotodeposizione di film di zinco. La fotolisi del composto organometallico è stata indotta dal fascio focalizzato del laser a KrF incidente perpendicolarmente su un substrato di quarzo; in questo modo sono stati realizzati depositi localizzati di Zn con spessore compreso tra 300 e 3000 ?. Inoltre il processo di deposizione è stato studiato misurando l'evoluzione temporale della frazione del fascio di un laser ad He-Ne trasmessa durante la crescita del film.

Резюме Исследуется фотохимия диметилцинка и диэтилцинка, индуцированная эксимерным лазером с помощью времени-пролетной масс-спектроскопии. Используя полученные результаты, диэтилцинк выбирается как предвестник для фотоосаждения пленки цинка. Фотолиз металлорганики осуществляется с помощью сфокусированного пучка KrF эксимерного лазера, падающего перпендикуларно на кварцевую подложку. Получастся локализированное осаждение цинка. С толщинами в области (300|3000) ?. Процесс осаждения исследуется посредством мониторирования временной эволюции доли He-Ne лазерного пучка, проходящего через растушую пленку цинка.
  相似文献   

14.
ZnO films doped with Ga (GZO) of varying composition were prepared on Corning glass substrate by radio frequency magnetron sputtering at various deposition temperatures of room temperature, 150, 250 and 400 °C, and their temperature dependent photoelectric and structural properties were correlated with Ga composition. With increasing deposition temperature, the Ga content, at which the lowest electrical resistivity and the best crystallinity were observed, decreased. Films with optimal electrical resistivity of 2-3 × 10−4 Ω cm and with good crystallinity were obtained in the substrate temperature range from 150 to 250 °C, and the corresponding CGa/(CGa + CZn) atomic ratio was about 0.049. GZO films grown at room temperature had coarse columnar structure and low optical transmittance, while films deposited at 400 °C yielded the highest figure of merit (FOM) due to very low optical absorption despite rather moderate electrical resistivity slightly higher than 4 × 10−4 Ω cm. The optimum Ga content at which the maximum figure of merit was obtained decreased with increasing deposition temperature.  相似文献   

15.
Highly conducting and transparent aluminum doped CdO thin films were deposited using pulsed laser deposition technique. The effect of growth temperature on structural, electrical, and optical properties was studied. It is observed that the film orientation changes from preferred (1 1 1) plane to (2 0 0) plane with increase in growth temperature. The electrical resistivity of the films was found to increase with increase in growth temperature. The low resistivity of 4.3 × 10−5 Ω cm and high transparency (∼85%) was obtained for the film grown at 150 °C. The band gap of the films varies from 2.74 eV to 2.84 eV.  相似文献   

16.
We report a systematic study of the electromechanical properties of graphene films for flexible transparent conducting electrodes. The flexibility of graphene films, which were grown using a chemical vapor deposition (CVD) method and transfer process on polyethylene terephthalate (PET) substrates, was investigated using a lab-made inner/outer bending, twisting and stretching test system. The electromechanical properties as a function of the change of bending radius, twisting angle and strain distance were evaluated by measuring the change in resistance. The change in resistance during the inner bending test was less than 8% even when the bending radius was 3 mm. Additionally, the results of the inner bending fatigue test showed a constant resistance throughout 2000 bending cycles. However, in the outer bending test, the resistance increased substantially when the bending radius was smaller than 10 mm. Therefore, we can expect that more cracks form between the grains of graphene during the outer bending test. The twistability and stretchability of the graphene film were also investigated. Both twisting and stretching tests show gradually increasing resistances according to the twisting angle and stretching distance. These results provide useful information regarding the electromechanical properties of graphene transparent conducting films for the development of flexible electronics.  相似文献   

17.
Transparent and conducting zirconium-doped zinc oxide films with high transparency and relatively low resistivity have been successfully prepared by RF magnetron sputtering at room temperature. The deposition pressure was varied from 0.6 to 2.5 Pa. A transformation from a relatively compact structure to individual grains was observed with the increase of deposition pressure. As the deposition pressure increases, the resistivity increases sharply due to both, the decrease of hall mobility and carrier concentration. The lowest resistivity achieved was 2.07 × 10−3 Ω cm at a deposition pressure of 0.6 Pa with a hall mobility of 16 cm2 V−1 s−1 and a carrier concentration of 1.95 × 1020 cm−3. The films are polycrystalline with a hexagonal structure and a preferred orientation along the c-axis. All the films present a high transmittance of above 90% in the visible range. The optical band gap decreases from 3.35 to 3.20 eV as the deposition pressure increases from 0.6 to 2.5 Pa.  相似文献   

18.
王延峰  张晓丹  黄茜  刘阳  魏长春  赵颖 《物理学报》2013,62(1):17803-017803
采用脉冲直流磁控溅射法,以WO3:ZnO陶瓷靶为溅射靶材,通过在溅射气氛中引入H2的方式,在室温条件下制备了低电阻率、高可见和近红外光区透过率的H,W共掺杂ZnO (HWZO)薄膜.系统地研究了H2流量对所制备的HWZO薄膜的结构、组分、元素价态、光电特性的影响.结果表明:掺入的H可促进Zn的氧化,改善薄膜的结晶质量,提高薄膜透过率.H引入之后薄膜的载流子浓度增加,电阻率降低.在H2流量为6mL/min时制备的HWZO薄膜性能最优,电阻率为7.71×10-4 Ω·m,光学带隙为3.58 eV,400-1100 nm的平均透过率为82.4%.  相似文献   

19.
The mechanical reliability of transparent In-Zn-Sn-O (IZTO) films grown using pulsed DC magnetron sputtering with a single oxide alloyed ceramic target on a transparent polyimide (PI) substrate at room temperature is investigated. All IZTO films deposited at room temperature have an amorphous structure. However, their optical and electrical properties change depending on the oxygen partial pressure applied during depositing process. At an oxygen partial pressure of 3%, the films exhibit a resistivity of 8.3 × 10−4 Ω cm and an optical transmittance of 86%. Outer bending tests show that the critical bending radius decreases from 10 mm to 7.5 mm when the oxygen partial pressure increases from 1% to 3%. In the inner bending test, the critical bending radius is independent of oxygen partial pressure at 3.5 mm, indicating excellent film flexibility. In the dynamic fatigue test, the electrical resistance of the films reduces by less than 1% for more than 2000 bending cycles. These results suggest that IZTO films have excellent mechanical durability and flexibility in comparison to ITO films.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号