首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we present a novel nano-scale fully depleted silicon-on-insulator metal-oxide semiconductor field-effect transistor (SOI MOSFET). On-state current increment, leakage current decrement, and self-heating effect improvement are pursued in our proposed structure. The structure makes use of a buried insulator layer which consists of two materials to reduce the self-heating effect. On the other hand, to modify the sub- and super-threshold drain current, vertical trapezoidal doping distribution and additional side gate technique are employed. Our novel transistor is named dual material buried insulator vertical trapezoidal doping SOI MOSFET (DV-SOI MOSFET). We investigate the electrical performance and thermal behavior of the DV-SOI MOSFET using a commercial device simulator. We demonstrate that the proposed structure increases on–off current ratio by orders of magnitude and considerably improves self-heating effect in comparison with the conventional uniform doping fully depleted silicon-on-insulator MOSFET (C-SOI) which uses side gate for better electrical performance.  相似文献   

2.
A novel graded doping profile, for the first time is introduced for reliability improvement and leakage current reduction. The proposed structure is called graded doping channel SiGe-on-insulator (GDC-SGOI). The key idea in this work is to modify the electric field and band energy with novel doping distribution in the channel for improving leakage current and hot electron. Using two-dimensional two-carrier simulation we demonstrate that the GDC-SGOI shows lower electron temperature near the drain region in the channel in comparison with the conventional SGOI (C-SGOI) with uniform doping. On the other hand, short channel effects (SCEs) such as drain induced barrier lowering (DIBL) and threshold voltage roll-off improvement leads to leakage current reduction. DIBL decrement and less dependence of the threshold voltage and DIBL on channel length variation in the GDC-SGOI structure show SCEs suppression. Furthermore the on-off current ratio (Ion/Ioff) in the GDC-SGOI is higher than that achieved from the C-SGOI. Therefore, the results show that the GDC-SGOI structure especially in low power and device reliability has excellent performance in comparison with the C-SGOI.  相似文献   

3.
In this paper for the first time, a partial silicon-on-insulator (PSOI) lateral double-diffused metal-oxide-semiconductor-field-effect-transistor (LDMOSFET) is proposed with a novel trench which improves breakdown voltage. The introduced trench in the partial buried oxide enhances peak of the electric field and is positioned in the drain side of the drift region to maximize breakdown voltage. We demonstrate that the electric field is modified by producing two additional electric field peaks, which decrease the common peaks near the drain and gate junctions in the trench-partial-silicon-on-insulator (T-PSOI) structure. Hence, a more uniform electric field is obtained. Two dimensional (2D) simulations show that the breakdown voltage of T-PSOI is nearly 64% higher in comparison with partial silicon on insulator (PSOI) structure and alleviate self heating effect approximately 9% and 15% in comparison with its conventional PSOI (C-PSOI) and conventional SOI (C-SOI) counterparts respectively. In addition the current of the T-PSOI, C-PSOI, conventional SOI (C-SOI), and fully depleted conventional SOI (FC-SOI) structures are 90, 82, 74, and 44 μA, respectively for a drain–source voltage VDS = 30 V and gate–source voltage VGS = 10 V.  相似文献   

4.
王思浩  鲁庆  王文华  安霞  黄如 《物理学报》2010,59(3):1970-1976
分析了沟道中超陡倒掺杂和均匀掺杂两种情况下超深亚微米MOS器件的总剂量辐照特性,主要比较了两种掺杂分布的器件在辐照情况下的泄漏电流与阈值电压的退化特性.结果表明,在辐照剂量500krad情况下,超陡倒掺杂器件的泄漏电流比均匀掺杂器件的泄漏电流低2—3个量级;而在辐照剂量500krad情况下,由于器件俘获的空穴量饱和,超陡倒掺杂的改善没有那么明显.但超陡倒掺杂的阈值电压漂移量比均匀掺杂的情况小约40mV.超陡倒掺杂有利于改善器件的总剂量辐照特性.文中还给出了用于改善器件辐照特性的超陡倒掺杂分布的优化设计,为超深亚微米器件抗辐照加固提供了依据.  相似文献   

5.
For the first time, a novel structure named as double step buried oxide silicon-on-insulator-MOSFET (DSBO-SOI) is proposed, which can combine the advantages of both SOI structure and bulk structure. Design consideration for a 30 nm channel length SOI-MOSFET employing double step buried oxide (DSBO) is presented. The electrical characteristics and temperature distribution are analyzed and compared with ultra-thin body silicon-on-insulator (UTB-SOI) MOSFET. The DSBO devices are shown to have better leakage and sub-threshold characteristics. Furthermore, the channel temperature is reduced during high-temperature operation and drain current increase suggesting that DSBO can mitigate the self-heating penalty effectively. Our results suggest that DSBO is an alternative to silicon dioxide as the buried dielectric in SOI, and expands the application of SOI to high temperature.  相似文献   

6.
应变Si全耗尽SOI MOSFET二维亚阈电流模型   总被引:1,自引:0,他引:1       下载免费PDF全文
秦珊珊  张鹤鸣  胡辉勇  屈江涛  王冠宇  肖庆  舒钰 《物理学报》2011,60(5):58501-058501
本文通过求解二维泊松方程,为应变Si 全耗SOI MOSFET建立了全耗尽条件下表面势模型,利用传统的漂移-扩散理论.在表面势模型的基础上,得到了应变Si 全耗SOI MOSFET的亚阈电流模型,并通过与二维器件数值模拟工具ISE的结果做比较,证明了所建立的模型的正确性.根据所建立的模型,分析了亚阈电流跟应变Si应变度的大小,应变Si膜的厚度和掺杂浓度的关系,为应变Si 全耗SOI MOSFET物理参数设计提供了重要参考. 关键词: 应变硅 FD-SOI MOSFET 表面势 亚阈电流  相似文献   

7.
辛艳辉  刘红侠  范小娇  卓青青 《物理学报》2013,62(10):108501-108501
为了改善金属氧化物半导体场效应管(MOSFET) 的短沟道效应(SCE)、 漏致势垒降低(DIBL) 效应, 提高电流的驱动能力, 提出了单Halo 全耗尽应变硅绝缘体 (SOI) MOSFET 结构, 该结构结合了应变Si, 峰值掺杂Halo结构, SOI 三者的优点. 通过求解二维泊松方程, 建立了全耗尽器件表面势和阈值电压的解析模型. 模型中分析了弛豫层中的Ge组分对表面势、表面场强和阈值电压的影响, 不同漏电压对表面势的影响, Halo 掺杂对阈值电压和DIBL的影响.结果表明, 该新结构能够抑制SCE和DIBL效应, 提高载流子的输运效率. 关键词: 应变Si 阈值电压 短沟道效应 漏致势垒降低  相似文献   

8.
Diode currents of MOSFET were studied and characterized in detail for the ion implanted pn junction of short channel MOSFETs with shallow drain junction doping structure. The diode current in MOSFET junctions was analyzed on the point of view of the gate-induced-drain leakage (GIDL) current. We could found the GIDL current is generated by the band-to-band tunneling (BTBT) of electrons through the reverse biased channel-to-drain junction and had good agreement with BTBT equation. The effect of the lateral electric field on the GIDL current according to the body bias voltage is characterized and discussed. We measured the electrical doping profiling of MOSFETs with a short gate length, ultra thin oxide thickness and asymmetric doped drain structure and checked the profile had good agreement with simulation result. An accurate effective mobility of an asymmetric source–drain junction transistor was successfully extracted by using the split CV technique.  相似文献   

9.
In this paper, a novel carbon nanotube field effect transistor with linear doping profile channel (LDC-CNTFET) is presented. The channel impurity concentration of the proposed structure is at maximum level at source side and linearly decreases toward zero at drain side. The simulation results show that the leakage current, on-off current ratio, subthreshold swing, drain induced barrier lowering, and voltage gain of the proposed structure improve in comparison with conventional CNTFET. Also, due to spreading the impurity throughout the channel region, the proposed structure has superior performance compared with a single halo CNTFET structure with equal saturation current. Design considerations show that the proposed structure enhances the device performance all over a wide range of channel lengths.  相似文献   

10.
侯晓宇  周发龙  黄如  张兴 《中国物理》2007,16(3):812-816
Two kinds of corner effects existing in double-gate (DG) and gate-all-around (GAA) MOSFETs have been investigated by three-dimensional (3D) and two-dimensional (2D) simulations. It is found that the corner effect caused by conterminous gates, which is usually deemed to deteriorate the transistor performance, does not always play a negative role in GAA transistors. It can suppress the leakage current of transistors with low channel doping, though it will enhance the leakage current at high channel doping. The study of another kind of corner effect, which exists in the corner at the bottom of the silicon pillar of DG/GAA vertical MOSFETs, indicates that the D-top structure with drain on the top of the device pillar of vertical transistor shows great advantage due to lower leakage current and better DIBL (drain induced barrier lowering) effect immunity than the S-top structure with source on the top of the device pillar. Therefore the D-top structure is more suitable when the requirement in leakage current and short channel character is critical.  相似文献   

11.
In this paper, we present the unique features exhibited by a novel nanoscale SiGe-on-insulator metal-oxide-semiconductor field-effect transistor (MOSFET) with modified channel band energy. The key idea in this work is to modify the band energy in the channel for improving electrical performances. Graded Ge composition profile is employed in the channel that leads to call the proposed structure as GC-SGOI structure. Using two-dimensional two-carrier simulation we demonstrate that the GC-SGOI structure has higher saturation velocity in comparison with stepped (SC-SGOI) and uniform (UC-SGOI) germanium composition due to the high conduction and valence bands slopes by using graded Ge composition profile. Also, our results show that the GC-SGOI exhibit excellent properties not only higher mobility, drain current and saturation velocity but also hot electron degradation improvement and better reliability. Therefore, refer to the results, the GC-SGOI structure has superior performances in comparison with the SC- and UC-SGOI structures which leads to be a good candidate for VLSI circuits.  相似文献   

12.
李劲  刘红侠  李斌  曹磊  袁博 《物理学报》2010,59(11):8131-8136
在结合应变Si,高k栅和SOI结构三者的优点的基础上,提出了一种新型的高k栅介质应变Si全耗尽SOI MOSFET结构.通过求解二维泊松方程建立了该新结构的二维阈值电压模型,在该模型中考虑了影响阈值电压的主要参数.分析了阈值电压与弛豫层中的Ge组分、应变Si层厚度的关系.研究结果表明阈值电压随弛豫层中Ge组分的提高和应变Si层的厚度增加而降低.此外,还分析了阈值电压与高k栅介质的介电常数和应变Si层的掺杂浓度的关系.研究结果表明阈值电压随高k介质的介 关键词: 应变Si k栅')" href="#">高k栅 短沟道效应 漏致势垒降低  相似文献   

13.
In this paper, a new nanoscale graded channel gate stack (GCGS) double-gate (DG) MOSFET structure and its 2-D analytical model have been proposed, investigated and expected to suppress the short-channel-effects (SCEs) and improve the subthreshold performances for nanoelectronics applications. The model predicts a shift, increasing potential barrier, in the surface potential profile along the channel, which ensures a reduced threshold voltage roll-off and DIBL effects. In the proposed structure, the subthreshold current and subthreshold swing characteristics are greatly improved in comparison with the conventional DG MOSFETs. The developed approaches are verified and validated by the good agreement found with the numerical simulation. (GCGS) DG MOSFET can alleviate the critical problem and further improve the immunity of SCEs of CMOS-based devices in the nanoscale regime.  相似文献   

14.
Xinxin Zuo 《中国物理 B》2022,31(9):98502-098502
A novel 1200 V SiC super-junction (SJ) MOSFET with a partially widened pillar structure is proposed and investigated by using the two-dimensional numerical simulation tool. Based on the SiC SJ MOSFET structure, a partially widened P-region is added at the SJ pillar region to improve the short-circuit (SC) ability. After investigating the position and doping concentration of the widened P-region, an optimal structure is determined. From the simulation results, the SC withstand times (SCWTs) of the conventional trench MOSFET (CT-MOSFET), the SJ MOSFET, and the proposed structure at 800 V DC bus voltage are 15 μs, 17 μs, and 24 μs, respectively. The SCWTs of the proposed structure are increased by 60% and 41.2% in comparison with that of the other two structures. The main reason for the proposed structure with an enhanced SC capability is related to the effective suppression of saturation current at the high DC bias conditions by using a modulated P-pillar region. Meanwhile, a good Baliga's FOM ($BV^{2}/R_{\rm on}$) also can be achieved in the proposed structure due to the advantage of the SJ structure. In addition, the fabrication technology of the proposed structure is compatible with the standard epitaxy growth method used in the SJ MOSFET. As a result, the SJ structure with this feasible optimization skill presents an effect on improving the SC reliability of the SiC SJ MOSFET without the degeneration of the Baliga's FOM.  相似文献   

15.
张书琴  梁仁荣  王敬  谭桢  许军 《中国物理 B》2017,26(1):18504-018504
A Si/Ge heterojunction line tunnel field-effect transistor(LTFET) with a symmetric heteromaterial gate is proposed.Compared to single-material-gate LTFETs, the heteromaterial gate LTFET shows an off-state leakage current that is three orders of magnitude lower, and steeper subthreshold characteristics, without degradation in the on-state current. We reveal that these improvements are due to the induced local potential barrier, which arises from the energy-band profile modulation effect. Based on this novel structure, the impacts of the physical parameters of the gap region between the pocket and the drain, including the work-function mismatch between the pocket gate and the gap gate, the type of dopant, and the doping concentration, on the device performance are investigated. Simulation and theoretical calculation results indicate that the gap gate material and n-type doping level in the gap region should be optimized simultaneously to make this region fully depleted for further suppression of the off-state leakage current.  相似文献   

16.
A unified charge-based model for fully depleted silicon-on-insulator (SOI) metal–oxide semiconductor field-effect transistors (MOSFETs) is presented. The proposed model is accurate and applicable from intrinsic to heavily doped channels with various structure parameters. The framework starts from the one-dimensional Poisson–Boltzmann equa- tion, and based on the full depletion approximation, an accurate inversion charge density equation is obtained. With the inversion charge density solution, the unified drain current expression is derived, and a unified terminal charge and intrinsic capacitance model is also derived in the quasi-static case. The validity and accuracy of the presented analytic model is proved by numerical simulations.  相似文献   

17.
Du W  Inokawa H  Satoh H  Ono A 《Optics letters》2011,36(15):2800-2802
In this Letter, a scaled-down silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistor (MOSFET) is characterized as a photon detector, where photogenerated individual holes are trapped below the negatively biased gate and modulate stepwise the electron current flowing in the bottom channel induced by the positive substrate bias. The output waveforms exhibit clear separation of current levels corresponding to different numbers of trapped holes. Considering this capability of single-hole counting, a small dark count of less than 0.02 s(-1) at room temperature, and low operation voltage of 1 V, SOI MOSFET could be a unique photon-number-resolving detector if the small quantum efficiency were improved.  相似文献   

18.
吕懿  张鹤鸣  胡辉勇  杨晋勇 《物理学报》2014,63(19):197103-197103
热载流子效应产生的栅电流是影响器件功耗及可靠性的重要因素之一,本文基于热载流子形成的物理过程,建立了单轴应变硅NMOSFET热载流子栅电流模型,并对热载流子栅电流与应力强度、沟道掺杂浓度、栅源电压、漏源电压等的关系,以及TDDB(经时击穿)寿命与栅源电压的关系进行了分析研究.结果表明,与体硅器件相比,单轴应变硅MOS器件不仅具有较小的热载流子栅电流,而且可靠性也获得提高.同时模型仿真结果与单轴应变硅NMOSFET的实验结果符合较好,验证了该模型的可行性.  相似文献   

19.
徐雁冰  杨红官 《中国物理 B》2017,26(12):127302-127302
An improved method of extracting the coupling capacitances of quantum dot structure is reported. This method is based on measuring the charge transfer current in the silicon nanowire metal–oxide–semiconductor field-effect transistor(MOSFET), in which the channel closing and opening are controlled by applying alternating-current biases with a half period phase shift to the dual lower gates. The capacitances around the dot, including fringing capacitances and barrier capacitances, are obtained by analyzing the relation between the transfer current and the applied voltage. This technique could be used to extract the capacitance parameters not only from the bulk silicon devices, but also from the silicon-oninsulator(SOI) MOSFETs.  相似文献   

20.
A novel carbon nanotube field effect transistor with symmetric graded double halo channel (GDH–CNTFET) is presented for suppressing band to band tunneling and improving the device performance. GDH structure includes two symmetric graded haloes which are broadened throughout the channel. The doping concentration of GDH channel is at maximum level at drain/source side and is reduced gradually toward zero at the middle of channel. The doping distribution at source side of channel reduces the drain induced barrier lowering (DIBL) and the drain side suppresses the band to band tunneling effect. In addition, broadening the doping throughout the channel increases the recombination of electrons and holes and acts as an additional factor for improving the band to band tunneling. Simulation results show that applying this structure on CNTFET enhances the device performance. In comparison with double halo structure with equal saturation current, the proposed GDH structure shows better characteristics and short channel parameters. Furthermore, the delay and power delay product (PDP) analysis versus on/off current ratio shows the efficiency of the proposed GDH structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号