首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一种新型硅基3C-SiC的生长方法及光谱学表征   总被引:2,自引:1,他引:1  
采用LPCVD技术, 以CH4和H2混合气体为反应源气, 在n-Si(111)衬底上生长3C-SiC晶体薄膜。H2在反应过程中作为稀释气体和运输气体, CH4作为碳源, 硅源有衬底硅来提供。利用X射线衍射分析仪、场发射扫描电子显微镜、激光拉曼光谱和傅里叶变换红外光谱分别研究3C-SiC薄膜的晶相结构、表面形貌及其光谱性质。结果表明此生长方法可以成功的成长出3C-SiC薄膜。  相似文献   

2.
王飞  杨治美  马瑶  龚敏 《光散射学报》2017,29(2):187-190
本文探索在SOI基片上通过顶层Si直接与碳源反应,反向外延生长3C-SiC薄膜的工艺条件和技术。采用LPCVD技术,以CH4和H2混合气体为反应源,在SOI衬底上生长3C-SiC薄膜。采用X射线衍射分析仪、场发射扫描电子显微镜和傅里叶红外光谱来研究样品的结构和性质;并研究反应前、后样品电压-电容特性的变化。研究结果表明,通过反向外延的方法,能够在SOI基片反向外延生长得到3C-SiC薄膜,但目前的工艺条件有待进一步的改善。  相似文献   

3.
The technique of resonant ultrasound spectroscopy was used to measure the elastic properties of a polycrystalline cubic silicon carbide (3C-SiC) thin film. The film, grown on a silicon (100) substrate, was 1.69 microns thick with columnar crystalline grains and a (111) texture. The substrate with the film was placed between two transducers and the resonant frequencies were measured; measurements were repeated after selective, timed dry etching of the film, allowing a determination of the elastic constants of the film alone. The film elastic constants, c(11)=371 and c(12)=146 GPa, were within a few percent of the literature values (c(11)=386, c(12)=136 GPa) of crystalline 3C-SiC. However, the film elastic constant c(44), 111 GPa, was significantly smaller than the bulk literature value, 254 GPa. For the film, c44 approximately (c(11)-c(12))/2, indicating that, quite unlike a bulk 3C-SiC crystal, the thin film is elastically isotropic.  相似文献   

4.
The current method of growing graphene by thermal decomposition of 3C-SiC(100) on silicon substrates is technologically attractive. Here, we investigate the evolution of the surface graphitization as a function of the synthesis temperature. We establish that the carbon enrichment of the surface is characterized by a clear modulation of the surface potential and structuration. The structural properties analysis of the graphene layers by low energy electron diffraction and micro-Raman spectroscopy demonstrate a graphitization of the surface.  相似文献   

5.
本文采用LPCVD技术在高温条件下, 利用甲烷和氢气混合气体作为碳源, 在n-Si(111)衬底上制备3C-SiC薄膜。通过XRD、XPS、SEM、FT-IR和PL研究发现: 温度对3C-SiC薄膜的形貌和晶体质量有较大的影响, 并且生长温度对3C-SiC薄膜的780 cm-1左右的FT-IR反射峰强度影响非常大; 在室温测试条件下, 3C-SiC薄膜有较强的蓝光波段的荧光峰。  相似文献   

6.
Direct growth of graphene on Co(3)O(4)(111) at 1000 K was achieved by molecular beam epitaxy from a graphite source. Auger spectroscopy shows a characteristic sp(2) carbon lineshape, at average carbon coverages from 0.4 to 3 ML. Low energy electron diffraction (LEED) indicates (111) ordering of the sp(2) carbon film with a lattice constant of 2.5(±0.1) ? characteristic of graphene. Sixfold symmetry of the graphene diffraction spots is observed at 0.4, 1 and 3 ML. The LEED data also indicate an average domain size of ~1800 ?, and show an incommensurate interface with the Co(3)O(4)(111) substrate, where the latter exhibits a lattice constant of 2.8(±0.1) ?. Core level photoemission shows a characteristically asymmetric C(1s) feature, with the expected π to π* satellite feature, but with a binding energy for the 3 ML film of 284.9(±0.1) eV, indicative of substantial graphene-to-oxide charge transfer. Spectroscopic ellipsometry data demonstrate broad similarity with graphene samples physically transferred to SiO(2) or grown on SiC substrates, but with the π to π* absorption blue-shifted, consistent with charge transfer to the substrate. The ability to grow graphene directly on magnetically and electrically polarizable substrates opens new opportunities for industrial scale development of charge- and spin-based devices.  相似文献   

7.
Massimo Camarda 《Surface science》2012,606(15-16):1263-1267
In this article we use three dimensional kinetic Monte Carlo simulations on super-lattices to study the hetero-polytypical growth of cubic silicon carbide polytype (3C-SiC) on misoriented hexagonal (4H and 6H) substrates. We analyze the quality of the 3C-SiC film varying the polytype, the miscut angle and the initial surface morphology of the substrate. We find that the use of 6H misoriented (4°–10° off) substrates, with step bunched surfaces, can strongly improve the quality of the cubic epitaxial film whereas the 3C/4H growth is affected by the generation of dislocations, due to the incommensurable periodicity of the 3C (3) and the 4H (4) polytypes. For these reasons, a proper pre-growth treatment of 6H misoriented substrates can be the key for the growth of high quality, twin free, 3C-SiC films.  相似文献   

8.

The ab initio calculations of the electronic structure of low-dimensional graphene–iron–nickel and graphene–silicon–iron systems were carried out using the density functional theory. For the graphene–Fe–Ni(111) system, band structures for different spin projections and total densities of valence electrons are determined. The energy position of the Dirac cone caused by the p z states of graphene depends weakly on the number of iron layers intercalated into the interlayer gap between nickel and graphene. For the graphene–Si–Fe(111) system, the most advantageous positions of silicon atoms on iron are determined. The intercalation of silicon under graphene leads to a sharp decrease in the interaction of carbon atoms with the substrate and largely restores the electronic properties of free graphene.

  相似文献   

9.
吴江滨  钱耀  郭小杰  崔先慧  缪灵  江建军 《物理学报》2012,61(7):73601-073601
本文采用第一性原理计算方法, 研究了不同晶向硅纳米团簇与石墨烯复合结构稳定性及其储锂性能. 计算了不同高度、大小硅团簇与石墨烯复合结构的结合能, 复合结构中嵌锂吸附能和PDOS. 分析表明, 硅团簇和石墨烯之间形成较强的Si—C键, 其中[111]晶向硅团簇与石墨烯作用的形成能最高, 结构最为稳定. 进一步计算其嵌锂吸附能, 发现硅团簇中靠近石墨烯界面处的储锂位置更加有利于锂的吸附, 由于锂和碳、硅之间有较强电荷转移, 其吸附能明显大于其他储锂位置. 同时在锂嵌入过程中, 由于石墨烯的引入, 明显减小了界面处硅的形变, 有望提高其作为锂电池负极材料的可逆容量.  相似文献   

10.
Recently discovered production techniques allow the synthesis of carbon nanostructured films with large surface areas. The abundance of carbon and the unique properties of these nanostructures, including high transparency and excellent electrical conductivity, make these materials very interesting for photovoltaic applications, in particular in combination with amorphous silicon. We examine the properties of thin carbon nanotube films (buckypaper) and graphene in junctions with undoped amorphous silicon thin films. The observed open-circuit voltages, 390 mV for the carbon nanotube film and 150 mV for graphene, suggest that solar cells with high efficiency can be produced without expensive processing steps like doping, multilayer film deposition in high vacuum, or transparent conducting oxide deposition. The buckypaper cells are stable in ambient conditions for many weeks, at least.  相似文献   

11.
Experimental investigation and computer simulation of a graphite monolayer (graphene) on different Ni single-crystal surfaces have been performed. In contrast to graphene on Ni(111), which forms a solid coating with a (1 × 1) structure, graphene on Ni(110) forms a complex crystal structure which is substantially distorted by interaction with the substrate. The calculations showed that the strong chemical interaction of carbon with nickel leads to a significant bending of the graphene layer (up to few angstroms). The calculated model made it possible to predict the main result of studying graphene on faceted surfaces, which revealed the graphene ability to coat geometrically nonuniform surfaces with a curved continuous film.  相似文献   

12.
Jing-Peng Song 《中国物理 B》2022,31(3):37401-037401
Introducing metal thin films on two-dimensional (2D) material may present a system to possess exotic properties due to reduced dimensionality and interfacial effects. We deposit Pb islands on single-crystalline graphene on a Ge(110) substrate and studied the nano- and atomic-scale structures and low-energy electronic excitations with scanning tunneling microscopy/spectroscopy (STM/STS). Robust quantum well states (QWSs) are observed in Pb(111) islands and their oscillation with film thickness reveals the isolation of free electrons in Pb from the graphene substrate. The spectroscopic characteristics of QWSs are consistent with the band structure of a free-standing Pb(111) film. The weak interface coupling is further evidenced by the absence of superconductivity in graphene in close proximity to the superconducting Pb islands. Accordingly, the Pb(111) islands on graphene/Ge(110) are free-standing in nature, showing very weak electronic coupling to the substrate.  相似文献   

13.
We present a simple, low-cost and high-effective method for synthesizing high-quality, large-area graphene using radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) on SiO2/Si substrate covered with Ni thin film at relatively low temperatures (650 °C). During deposition, the trace amount of carbon (CH4 gas flow rate of 2 sccm) is introduced into PECVD chamber and the deposition time is only 30 s, in which the carbon atoms diffuse into the Ni film and then segregate on its surface, forming single-layer or few-layer graphene. After deposition, Ni is removed by wet etching, and the obtained single continuous graphene film can easily be transferred to other substrates. This investigation provides a large-area, low temperature and low-cost synthesis method for graphene as a practical electronic material.  相似文献   

14.
A phase transition leading to the transformation of a graphene layer into a multilayer graphite film at the surface of a carbonized metal has been experimentally studied on the atomic level under ultrahigh-vacuum conditions. It has been shown that this process is governed by dynamic equilibrium between edge atoms of graphene islands and a chemisorbed carbon phase, two-dimensional carbon “gas,” and is observed in the temperature range of 1000–1800 K. The features of the phase transition at the surfaces Ni(111), Rh(111), and Re(10-10) are similar, although the specific kinetic characteristics of the process depend on the properties of the substrate. It has been shown that change in the emissivity of the substrate after the formation of a multilayer graphite film increases the rate of the phase transition and leads to a temperature hysteresis.  相似文献   

15.
Solar cells that combine single-crystalline silicon(Si) with graphene(G) have been widely researched in order to develop next-generation photovoltaic devices. However, the power conversion efficiency(PCE) of G/Si solar cell without chemical doping is commonly low due to the relatively high resistance of graphene. In this work, through combining graphene with carbon nanotube(CNT) networks, we fabricated three kinds of hybrid nanocarbon film/Si heterojunction solar cells in order to increase the PCE of the graphene based Si solar cell. We investigated the characteristics of different nanocarbon film/Si solar cells and found that their performance depends on the heterojunctions. Specifically, a doping-free G-CNT/Si solar cell demonstrated a high PCE of 7.9%, which is nearly equal to the combined value of two individuals(G/Si and CNT/Si). This high efficiency is attributed to the synergistic effect of graphene and CNTs, and can be further increased to 9.1% after applying a PMMA antireflection coating. This study provides a potential way to further improve the Si based heterojunction solar cells.  相似文献   

16.
郭佳敏  叶超  王响英  杨培芳  张苏 《中国物理 B》2017,26(6):65207-065207
The effect of driving frequency on the structure of silicon grown on Ag(111) film is investigated, which was prepared by using the very-high-frequency(VHF)(40.68 MHz and 60 MHz) magnetron sputtering. The energy and flux density of the ions impinging on the substrate are also analyzed. It is found that for the 60-MHz VHF magnetron sputtering, the surface of silicon on Ag(111) film exhibits a small cone structure, similar to that of Ag(111) film substrate, indicating a better microstructure continuity. However, for the 40.68-MHz VHF magnetron sputtering, the surface of silicon on Ag(111) film shows a hybrid structure of hollowed-cones and hollowed-particles, which is completely different from that of Ag(111)film. The change of silicon structure is closely related to the differences in the ion energy and flux density controlled by the driving frequency of sputtering.  相似文献   

17.
The modification of the silicon carbide (4H-SiC) single-crystal surface in a chlorine-containing gas mixture at high temperature (800-1000 °C) and ambient pressure was investigated. The results of silicon carbide chlorination are found to strongly depend on the hexagonal surface orientation. Due to the thermodynamically more favorable reaction of chlorine with silicon rather than carbon, the C-terminated side clearly undergoes considerable changes, resulting in coverage by a black-colored carbon film, whereas the Si-side (0 0 0 1) surprisingly remains visually untouched. With using X-ray photoelectron spectroscopy (XPS), angle-resolved XPS and SEM it is shown that this drastic change in behavior is associated with a different structure of oxicarbide/silicate adlayer formed on the C- and Si-terminated sides of silicon carbide surface during experimental pre-treatment and air exposure. The presence of oxygen bridges connecting the silicate adlayer with the bulk SiC in the case of Si-side inhibits the chlorination reaction and makes this surface strongly resistant to chlorine attack. Only some places on the Si-terminated side demonstrate traces of chlorine etching in the form of hexagonal-shaped voids, which are possibly initiated by distortion of the initial crystalline structure by micropipes. In contrast, a thin carbon layer resulted on the C-terminated side as a consequence of the chlorination process. XPS, ARXPS, SEM and Raman spectroscopy study of created film allows us to argue that it consists mainly of sp2-bonded carbon, mostly in the form of nanoscale graphene sheets. The absence of a protective oxygen bridge between the silicate adlayer and the bulk silicon carbide crystal leads to unlimited growth of carbon film on the side.  相似文献   

18.
We have investigated single crystal Ir(111) films grown heteroepitaxially on Si(111) wafers with yttria-stabilized zirconia (YSZ) buffer layers as possible substrates for an up-scalable synthesis of graphene. Graphene was grown by chemical vapor deposition (CVD) of ethylene. As surface analytical techniques we have used scanning tunneling microscopy (STM), low-energy electron diffraction, scanning electron microscopy, and atomic force microscopy. The mosaic spread of the metal films was below 0.2° similar to or even below that of standard Ir bulk single crystals, and the films were basically twin-free. The film surfaces could be improved by annealing so that they attained the perfection of bulk single crystals. Depending on the CVD conditions a lattice-aligned graphene layer or a film consisting of different rotational domains were obtained. STM data of the non-rotated phase and of the phases rotated by 14° and 19° were acquired. The quality of the graphene was comparable to graphene grown on bulk Ir(111) single crystals.  相似文献   

19.
In the quest for the construction of silicene, the silicon analogue of graphene, recent experimental studies have identified a number of distinct ultrathin Si over-layer structures on a Ag(111) surface. Here we use first-principles calculations to probe associated atomic-scale mechanisms that can give rise to this rich behavior of Si wetting layers. We find that the interaction between the Si film and the Ag substrate, neither too strong nor too weak, combined with the possibility of buckling, allows for the incorporation of a number of excess Si adatoms in continuous overlayers with a honeycomb network topology. Depending on the Si coverage, we thus obtain a hierarchy of Si mono-atomic films, in agreement with experiments.  相似文献   

20.
Carbon interaction with rhodium (111) surface has been studied by Auger electron spectroscopy in ultrahigh vacuum within a broad temperature interval of 300-1800 K. It has been shown that the graphene monolayer remains stable on the metal surface within a relatively narrow temperature interval of ~50 K below the carbonization point, and when heated above this point, graphene breaks up gradually by transferring first to the island state, and after that, to chemisorbed carbon “gas.“ As the temperature decreases, a stable multilayer graphite film forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号