首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The hydrogen permeation characteristics of alloy membranes based on Pd-coated V90Al10 alloy membrane have been investigated in the pressure range 1-3 atm under pure hydrogen and hydrogen-carbon dioxide gas mixture at 450 °C. Hydrogen permeation experiments have been confirmed that hydrogen flux was 21.1 ml/min/cm2 for a Pd-coated V90Al10 alloy membrane (thickness: 0.5 mm) using pure hydrogen as the feed gas. It has been found that Pd-coated V90Al10 alloy membranes exhibit good resistance to hydrogen embrittlement in pure hydrogen atmosphere. After different hydrogen permeation flux tests under different pressure condition in presence of hydrogen-carbon dioxide gas mixture, the characteristics of the Pd-coated V90Al10 alloy membranes were examined by ex-situ analysis techniques. The loss of cell performance observed in the presence of hydrogen-carbon dioxide gas mixture is mainly attributed to both physical and chemical degradations of membrane, which led to structural changes in the Pd-coated V90Al10 alloy membrane.  相似文献   

2.
The effects of annealing prior to cold rolling on the microstructure, magnetic and mechanical properties of low-C grain non-oriented (GNO) electrical steels have been investigated. The grain structure of hot-rolled electrical steel strips is modified by annealing at temperatures between 700 and 1050 °C. Annealing at temperatures less than the ferrite to austenite+ferrite transformation temperature on heating (Ac1) causes a marginal effect on the grain size. However, annealing in the intercritical region at temperatures between Ac1 and Ac3 (the ferrite+austenite to austenite transformation temperature on heating) causes rapid decarburization and development of large columnar ferrite grains free of carbide particles. This microstructure leads, after cold rolling and a fast annealing treatment, to carbide free, large ferrite grain microstructures with magnetic and mechanical properties superior to those observed typically in the same steel in the industrially fully processed condition. These results are attributed to the increment in grain size and to the {1 0 0} fiber texture developed during the final annealing at temperatures up to 850 °C. Annealing at higher temperatures, T>Ac3, results in a strong {1 1 1} fiber texture and an increase of the quantity of second phase particles present in the microstructure, which lead to a negative effect on the final properties. The results suggest that annealing prior to cold rolling offers an attractive alternative processing route for the manufacture of fully processed low C GNO electrical steels strips.  相似文献   

3.
何开元  吴宝琴 《物理学报》1963,19(11):717-726
本文测定了冷轧的及冷轧后又经不同温度退火的50%Ni-50%Fe合金的磁转矩曲线,从而对试样中的冷轧及再结晶结构作了推断。从具有完整立方结构的试样上测得的磁晶各向异性常数k1和其他作者从单晶体上得到的值相近,而从保有冷轧结构的试样定得的k1值则较大。考察了影响k1测定值的可能因素;讨论了磁致伸缩各向异性导致的弹性能以及有序程度对k1值的影响。 关键词:  相似文献   

4.
Electrical and optical activation studies of AlxGa1−xN (x = 0.11 and 0.21) implanted with silicon were made as a function of ion dose and anneal temperature. Silicon ions were implanted at 200 keV with doses ranging from 1 × 1014 to 1 × 1015 cm−2 at room temperature. The implanted samples were subsequently annealed from 1100 to 1300 °C for 20 min in a nitrogen environment. A maximum electrical activation efficiency of 91% was obtained for the Al0.11Ga0.89N implanted with the highest dose of 1 × 1015 cm−2 even after annealing at 1150 °C. 100% activation efficiencies were successfully obtained for the Al0.21Ga0.79N samples after annealing at 1300 °C for both doses of 5 × 1014 and 1 × 1015 cm−2. The mobility of the Si-implanted AlxGa1−xN increases with annealing temperature, and the highest mobilities are 109 and 98 cm2/V·s for Al0.11Ga0.89N and Al0.21Ga0.79N, respectively. The cathodoluminescence (CL) spectra for all the samples exhibited a sharp neutral-donor-bound exciton peak, and the CL intensity increases with annealing temperature, indicating successive improved implantation damage recovery as the annealing temperature is increased. These results provide the optimum annealing conditions for activation of implanted Si ions in AlxGa1−xN.  相似文献   

5.
Both electrical and optical activation studies of Si-implanted Al0.18Ga0.82N have been made as a function of anneal time and anneal temperature to obtain maximum possible electrical activation efficiency. Silicon ions were implanted at 200 keV with doses of 5×1014 and 1×1015 cm−2, and the samples were annealed from 1100 to 1250 °C for 5-25 min with a 500 Å thick AlN cap in a nitrogen environment. The electrical activation efficiency and Hall mobility increase with anneal time and anneal temperature. Nearly 100 and 95% electrical activation efficiencies were obtained for Si-implanted Al0.18Ga0.82N with doses of 5×1014 and 1×1015 cm−2 and annealing at 1250 and 1200 °C for 25 min, respectively. The photoluminescence measurements show an excellent implantation damage recovery after annealing at these optimum anneal conditions, showing a strong near band emission. These optical results correlate well with the electrical results.  相似文献   

6.
The sorption kinetics of Mg2Ni alloys are strongly improved using two different surface treatments. One consists of the preparation of tailor-made Mg2Ni/C composites by ball-milling with previously ground carbons. The strong reducing character of carbon, allowing for the reduction of NiO initially present at the alloy surface, leads to the partial removal of the oxide layer that strongly hinders the hydrogen migration throughout the alloy surface on desorption, whereas resulting Ni particles act as catalysts during the absorption process. The second surface treatment deals with the deposition of Pd particles on the alloy surface using the polyol process. The catalytic effect of Pd is responsible for an important enhancement of the absorption kinetic, whereas Pd particles probably act as hydrogen pumps, during the desorption process, leading to a faster hydrogen release. By combining both techniques, desorption rates as high as 2.7 wt% in 60 min and 2.9 wt% in 30 min are obtained at 150 and 200 °C, respectively.  相似文献   

7.
The room temperature positron annihilation lifetime spectra and 57Fe Mössbauer spectra were measured for pure Fe as well as for iron-based Fe1?xRex and Fe1?xMox solid solutions with x in the range 0.01≤x≤0.05. The measurements were performed in order to learn more about creation of structural defects during formation and further mechanical processing of the iron systems under consideration. The spectra were collected at least twice for each studied sample synthesized in an arc furnace—after cold rolling to the thickness of about 40 μm as well as after subsequent annealing at 1270 K for 2 h. It was found that in the annealed samples positrons live much shorter than in the not annealed ones which suggest that the latter samples are more defected as it could be expected. Moreover simultaneous analysis of the positron and Mössbauer data shows that cold rolling leads to creation of two types of defects. It seems that they are dislocations and vacancies. Finally from the Mössbauer data it follows that vacancies are located mainly in the vicinity of non-iron atoms, Re or Mo. This speaks in favour of the suggestion that in iron matrix the impurities mentioned above and vacancies interact attractively which supports the known from the literature, theoretical calculations on the Mo-vacancy interaction in iron.  相似文献   

8.
(Pb0.72La0.28)Ti0.93O3 (PLT)/Pb(Zr0.52Ti0.48)O3 (PZT)/PLT heterostructure was fabricated by using a pulsed laser deposition method. After depositing this structure, the hydrogen annealing process was performed in the forming gas (95% N2 + 5% H2) at a substrate temperature of 400 °C for 30 min to study the effects of hydrogen passivation.The heterostructure was not degraded by the hydrogen annealing in contrast with the case of PZT film without buffer layers. This heterostructure showed almost no degradation in terms of the remanent polarization even after the H2 annealing, while the PZT film exhibited 64% reduction, which is from 20.1 to 7.3 μC/cm2 after the annealing. The leakage current was decreased by an order in the case of the heterostructure, while the leakage current of the PZT film increased by an order.These can be explained that the PLT bottom buffer layer works as a seeing layer to help the PZT growth and the top PLT buffer layer acts as a barrier for penetrating hydrogen atoms.  相似文献   

9.
IR absorption spectra, 4200–3100 cm−1, of water in CCl4 solutions are presented. It is shown that for saturated solutions significant amounts of water are present as dimer (ca. 2%). The IR spectra of the monomer and dimer are retrieved. The integrated absorption coefficients of the monomer absorption are significantly enhanced relative to the gas phase values. The dimer spectrum consists of 5 bands, of which 4 were expected from data from cold beams and cold matrices. The origin of the “extra” band is discussed. In addition it is argued that the dimer absorption bands intensities must be enhanced relative to the gas phase values. Based on recent calculations of band strengths, and observed frequency shifts relative to the gas phase, the intensity enhancement factors are estimated as well as the monomer/dimer equilibrium constant in CCl4 solution at T=296 K (Kc=1.29 mol−1 L). It is noted that the observed dimer spectrum has a striking resemblance with the water vapour continuum determined by Burch in 1985 which was recently remeasured by Paynter et al. and it is concluded that the atmospheric water absorption continuum in the investigated spectral region must be due to water dimer. Based on the newly published spectral data a revised value of the gas phase equilibrium constant is suggested (Kp=0.035 atm−1 at T=296 K) as well as a value for the standard enthalpy of formation, ΔH0=15.4 kJ mol−1.  相似文献   

10.
《Current Applied Physics》2015,15(4):473-478
In this work, graphene oxide–cuprous oxide (GO–Cu2O) composite films were grown on fluorine-doped tin oxide substrates by electrochemical deposition. We investigated the effects of the annealing temperature on the morphological, structural, optical and photoelectrochemical (PEC) properties of GO–Cu2O composite films. As a result, our work shows that while GO–Cu2O composite films exhibit the highest XRD (111) peak intensity at 300 °C sample, the highest photocurrent density value obtained was −4.75 mA/cm2 at 200 °C sample (using 0.17 V versus a reversible hydrogen electrode (RHE)). In addition, a reduction reaction at 300 °C sample was observed using XPS analysis from the shift in the O1s peak in addition to a weaker O1s peak intensity.  相似文献   

11.
Optical channel waveguides in Nd3+:MgO:LiNbO3 crystals are produced by using implantation of 500 keV protons at dose of 6×1016 ions/cm2 with a stripe photoresist mask. With thermal annealing treatment at 400°C for 60 min, the propagation losses of the waveguides could be reduced down to ∼4 dB/cm at wavelength of 632.8 nm. The calculated modal profiles are in fairly good agreement with the experimental near-field intensity distributions of the waveguide modes. The microluminescence investigation indicates the emission intensity of Nd3+ ions is only slightly modified with respect to the bulk, exhibiting potentials for laser applications.  相似文献   

12.
The effect of the heat treatment on the corrosion behaviour of amorphous Fe85Cr5P6C3Si alloy in 0.5 M H2SO4 has been investigated using electrochemical techniques. Heat treatment was carried out at temperatures varying between 250 and 650 °C at different times 30, 60, 120 and 240 min. The evolution of crystallization processes after annealing was identified by differential thermal analysis (DTA) and by X-ray diffraction (XRD). The diagrams obtained by DTA show that the structure of samples treated at high temperature changes towards a crystalline state. This crystallization phenomenon is confirmed by the analysis with the XRD. The results obtained from the polarization curves reveal that for all the studied temperatures of annealing, Fe-Cr-P-C-Si exhibits a phenomenon of passivation without breakdown of passivity. The best corrosion resistance is obtained at the temperature of annealing 350 °C. For an annealing at higher temperatures, Fe85Cr5P6C3Si becomes less corrosion resistant than same amorphous alloy treated with temperatures lower than 350 °C.  相似文献   

13.
Microstructure by X-ray diffraction and Mössbauer spectroscopy, and isothermal magnetic entropy changes in the bulk amorphous Fe60Co5Zr8Mo5W2B20 alloy in the as-quenched state and after annealing at 720 K for 15 min are studied. The as-cast and heat treated alloy is paramagnetic at room temperature. The quadrupole splitting distribution is unimodal after annealing indicating the more homogenous structure in comparison with that for the as-cast alloy. Curie temperature slightly increases after annealing from 265±2 K in the as-quenched state to 272±2 K and the alloy exhibits the second order magnetic phase transition. The maximum of isothermal magnetic entropy changes appears at the Curie points and is equal to 0.30 and 0.42 J/(kg·K) for the alloy in the as-quenched state and after annealing, respectively. In the paramagnetic region the material behaves as a Curie-Weiss paramagnet.  相似文献   

14.
This study investigated changes in the thermoluminescence sensitivity of volcanic and plutonic quartz following irradiation and annealing treatments with the aim of improving the accuracy of red thermoluminescence (RTL) dating. The response to X-ray irradiation (49 Gy) and RTL readout to 450 °C at a rate of 1 °C s?1 was repeated 12 times and the sensitivity change induced by doses ranging from 49 to 293 Gy was examined. The results of these two experiments revealed that the final enhanced ratio of the sensitivity of plutonic quartz is 2.1–2.8 and 2.2–2.3 for two types of analyzed samples, much greater than that of volcanic quartz. To examine the thermal stability of quartz, several annealing treatments were performed from 300 to 900 °C for 100 min. An annealing treatment of 500 °C for 100 min resulted in a strong enhancement of RTL emission intensity for plutonic quartz, approaching the level for volcanic quartz. Finally, the single aliquot regeneration (SAR) method was applied to evaluate the absorbed dose, De, for aliquots irradiated with a known-dose ranging from 195 to 1952 Gy. All SAR De values obtained with volcanic quartz were in good agreement with the known dose values; whereas for plutonic quartz large uncertainties in De were obtained due to a marked sensitivity change. The magnitude of the RTL sensitivity change of quartz depends on dose and annealing treatment, and is clearly dependent on a classification of quartz based on thermal history.  相似文献   

15.
Amorphous ErSiO films have been fabricated on p-type Si (001) substrates using rf magnetron sputtering technique. X-ray diffraction, high-resolution transmission electron microscopy, and atomic force microscopy were employed to investigate the samples. It is found that ErSiO film exhibits a flat surface, a sharp interface and superior electrical properties after post-deposition annealing in O2 ambience for 30 min at 450°C. The effective dielectric constant of the film is measured to be 14.2, and the effective oxide thickness reaches 1.9 nm, with a low leakage current density of 1.1×10−4 A/cm2 at an electric field of 1 MV cm−1 after annealing at 450°C. The obtained characteristics make the amorphous ErSiO films a promising substitute for SiO2 as a high-k gate dielectric.  相似文献   

16.
Interface properties of BCN/GaN metal-insulator-semiconductor (MIS) structures are investigated by X-ray photoelectron spectroscopy (XPS) and capacitance versus voltage (C-V) characteristics measurements. The BCN/GaN samples are fabricated by in situ process consisting of plasma treatment and deposition of BCN film in the plasma-assisted chemical vapor deposition (PACVD) apparatus. XPS measurement shows that the oxide formation at the BCN/GaN interface is suppressed by nitrogen (N2) and hydrogen (H2) plasma treatment. The interface state density is estimated from C-V characteristics measured at 1 MHz using Terman method. The minimum interface state density appears from 0.2 to 0.7 eV below the conduction band edge of GaN. The minimum value of the interface state density is estimated to be 3.0 × 1010 eV−1 cm−2 for the BCN/GaN structure with mixed N2 and H2 plasma treatment for 25 min. Even after annealing at 430 °C for 10 min, the interface state density as low as 6.0 × 1010 eV−1 cm−2 is maintained.  相似文献   

17.
《Current Applied Physics》2014,14(9):1176-1180
We demonstrated the improved performance of near UV (365 nm) InGaN/AlGaN-based LEDs using highly reflective Al-based p-type reflectors with graphene sheets as a diffusion barrier. The use of graphene sheets did not degrade the reflectance of ITO/Al contacts, viz. ∼81% at 365 nm. The ITO/graphene/Al contacts annealed at 300 °C exhibited better ohmic behavior with a specific contact resistance of 1.5 × 10−3 Ωcm2 than the ITO/Al contact (with 9.5 × 10−3 Ωcm2). Near UV LEDs fabricated with the ITO/graphene/Al contact annealed at 300 °C showed a 7.2% higher light output (at 0.1 W) than LEDs with the ITO/Al reflector annealed at 300 °C. The SIMS results exhibited that, unlike the ITO/graphene/Al, the ITO/Al contacts undergo a significant indiffusion of Al atoms toward the GaN after annealing. Furthermore, both Ga and Mg atoms were also more extensively outdiffused in the ITO/Al contacts after annealing. On the basis of the SIMS and electrical results, the possible explanations for the annealing-induced degradation of the ITO/Al contacts are described and discussed.  相似文献   

18.
The Fe63B23Nd7Y3Nb3Cr1 nanocomposite magnets in the form of sheets have been prepared by copper mold casting technique. The phase evolution, crystal structure, microstructural and magnetic properties have been investigated in the as-cast and annealed states. The as-cast sheets show magnetically soft behaviors which become magnetically hard by thermal annealing. The optimal annealed microstructure was composed of nanosize soft magnetic α-Fe (19-29 nm) and hard magnetic Nd2Fe14B (45-55 nm) grains. The best hard magnetic properties such as intrinsic coercivity, jHc of 1119 kA/m, remanence, Br of 0.44 T, magnetic induction to saturation magnetization ratio, Mr/Ms=0.61 and maximum energy product, (BH)max of 55 kJ/m3 was obtained after annealing at 680 °C for 15 min. The annealing treatment above 680 °C results in non-ideal phase grains growth, which degrade the magnetic properties.  相似文献   

19.
The effect of thermomechanical processing on the formation of shear bands and on the magnetic properties of a 3.0 wt% silicon non-oriented steel was investigated by hot rolling samples with different thicknesses at different temperatures, in order to obtain a variation in hot band grain size and cold strain. All the samples were processed in a single-stage cold rolling and finally annealed at 1020 °C. It was found that the increase of the hot band grain size decreases the γ fiber volume fraction and increases the η fiber volume fraction after the final annealing. The increase of the cold strain strongly contributed to this result. A good combination of intense generation of shear bands, and proper crystallographic texture, due to higher nucleation of grains with favorable orientations to magnetization in these bands, can be obtained for the samples hot rolled at 1000 and 1120 °C and submitted to cold strain of 64.3% and 72.2% respectively. However the best combination of B50, W15/60 and μr can be obtained by hot rolling the samples at 1000 °C to the thickness of 1.4 mm, corresponding to 64.3% of cold strain.  相似文献   

20.
We investigated the electrical properties of Cr(30 nm)/Al(200 nm) contacts to N-polar n-type GaN for high-performance vertical light-emitting diodes and compare them with those of Ti(30 nm)/Al(200 nm) contacts. Before annealing, both the samples show ohmic behaviors with a contact resistivity of 1.9-2.3 × 10−4 Ωcm2. Upon annealing at 250 °C for 1 min in N2 ambient, the Ti/Al contacts become non-ohmic, while the Cr/Al contacts remain ohmic with a contact resistivity of 1.4 × 10−3 Ωcm2. Based on X-ray photoemission spectroscopy and secondary ion mass spectrometry results, ohmic formation and degradation mechanisms are briefly described and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号