首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents a theoretical model describing the force required to move a coalesced liquid droplet along an oleophilic filter fiber. Measurements have been made using the atomic force microscope (AFM) to examine these forces over a range of fiber and droplet diameters as well as oil properties. Good agreement between measured and modeled forces was found. The influence of droplet displacement perpendicular to the fiber on the force required to move the droplet has also been determined experimentally and theoretically. It was found that fiber surface inhomogeneities are likely to influence results. This work has also established empirical relationships that can be used to predict the force, based on a known droplet volume, for the liquid types used.  相似文献   

2.
Phobic droplet-fiber systems possess complex geometries, which have made full characterization of such systems difficult. This work has used atomic force microscopy (AFM) to measure droplet-fiber forces for oil droplets on oleophobic fibers over a range of fiber diameters. The work adapted a previous method and a theoretical model developed by the authors for philic droplet-fiber systems. A Bayesian statistical model was also used to account for the influence of surface roughness on the droplet-fiber force. In general, it has been found that the force required to move a liquid droplet along an oleophobic filter fiber will be less than that required to move a droplet along an oleophilic fiber. However, because of the effects of pinning and/or wetting behavior, this difference may be less than would otherwise be expected. Droplets with a greater contact angle (~110°) were observed to roll along the fiber, whereas droplets with a lesser contact angle (<90°) would slide.  相似文献   

3.
A method has been developed for attaching oil (tetradecane) droplets to the end of an atomic force microscopy (AFM) cantilever and for immobilizing droplets on a glass substrate. This approach has permitted the monitoring of droplet-droplet interactions in aqueous solution as a function of interdroplet separation. Coating the droplet surfaces with added proteins or surfactants has allowed the production of model emulsions. We demonstrate that AFM measurements of droplet deformability are sensitive to interfacial rheology by modifying the interfacial film on a pair of droplets in situ. For droplets coated with the anionic surfactant sodium dodecyl sulfate, screening of the double layer has been found to facilitate coalescence. Direct imaging of the droplets has revealed the presence of regularly spaced concentric rings on the droplet surfaces. Careful experimental studies suggest that these structures may be imaging artifacts and are not perturbations of the droplet surface determined by the composition of the interface.  相似文献   

4.
We studied the mechanical behavior of densely packed (up to approximately 30% v/v), sedimented layers of (1 microm) water-in-oil W/O emulsion droplets, upon indentation with a (10 microm) large spherical probe. In the presence of attractive forces, the droplets form solid like networks which can resist deformation. Adding a polymer to the oil phase was used to control droplet attraction. The droplet layers were assembled via normal gravity settling. Considering that both the network structure and the droplet interactions play a key role, we used a combination of atomic force microscopy (AFM) and confocal scanning laser microscopy (CSLM) to characterize the mechanical behavior. Here the AFM was used both as indentation tool and as force sensor. Indentation experiments were performed via a protocol consisting of approach, waiting, and retract stages. CSLM was used to observe the network structure at micron resolution in real time. Use of refractive index matched fluorescent droplets allowed the visualization of the entire layer. Upon compression with the probe, a markedly nonhomogeneous deformation occurred, evidenced by the formation of a dense corona (containing practically all of the displaced droplets) in the direct vicinity of the probe, as well as more subtle deformations of force-chains at larger distances. Upon decompression, both the imprint of the indenter and the corona remained, even long after the load was released. The force-distance curves recorded with the AFM correspond well to these observations. For each deformation cycle performed on fresh material, the retract curve was much steeper than the approach curve, thus corroborating the occurrence of irreversible compaction. Contrary to classic linear viscoelastic materials, this hysteresis did not show any dependence on the deformation speed. Our force-indentation approach curves were seen to scale roughly as F approximately delta(3/2). The pre-factor was found to increase with the polymer concentration and with the density of the network. These findings suggest that this new AFM-CSLM method could be used for rheological characterization of small volumes of "granular networks" in liquid. Our hypothesis that the mechanical resistance of the networks originates from interdroplet friction forces, which in turn are set by the interdroplet potential forces, is supported by the predictions from a new mechanical model in which the interdroplet bonds are represented by stick-slip elements.  相似文献   

5.
We used atomic force microscopy (AFM) to study the deformation and wetting behavior of large (50-250 microm) emulsion droplets upon mechanical loading with a colloidal glass probe. Our droplets were obtained from water-in-oil emulsions. By adding gelatin to the water prior to emulsification, also droplets with a bulk elasticity were prepared. Systematic variations of surfactant and gelatin concentrations were made, to investigate their effect on the deformation and wetting behavior of the droplets and to identify the contributions of interfacial tension, bulk elasticity, and expelled water. The AFM experiments were performed in force--distance mode and showed on approach a repulsive regime which in many cases was terminated by a jump-in of the probe. In the case of pure water (i.e. gelatin-free) droplets, the repulsive part of the curve showed a good linearity, thus allowing the extraction of an effective droplet spring constant. This quantity was found to decrease on raising the surfactant concentration from below the critical micelle concentration (cmc) to well above the cmc, and its numerical values were found to correspond remarkably well to literature values for the interfacial tension. Our findings indicate that, on gelatin increase inside the droplets, the bulk elasticity gradually becomes dominant and the droplets' stiffness does not depend anymore on surfactant concentration. Also the stability of the droplet interface against wetting, as measured by the force at which the jump-in instability occurs, was enhanced by gelatin. For gelatin concentrations of > or =15 wt %, the droplets were found to behave like purely elastic bodies. Both gelatin and surfactant contribute positively to the stability against interface breakup.  相似文献   

6.
This paper details results of an experimental study of the capture of solid and liquid aerosols on fibrous filters wetted with water. A microscopic cell containing a single fibre (made from a variety of materials) was observed via a microscope, with a high speed CCD camera used to dynamically image the interactions between liquid droplets, zeolite and PSL particles and fibres. Variable quantities of liquid irrigation were used, and the possibility for subsequent fibre regeneration after clogging or drying was also studied. It was found that drainage of the wetting liquid (water) from the fibres occurred, even at very low irrigation rates when the droplet consisted almost completely of captured particles. It was also found that the fibre was rapidly loaded with captured particles when the irrigation was not supplied. However, almost complete regeneration (removal of the collected cake) by the liquid droplets occurred shortly after recommencement of the water supply. The study also examined the capture of oily liquid aerosols on fibres wetted with water. A predominance of the barrel shaped droplet on the fibre was observed, with oil droplets displacing water droplets (if the oil and fibre combination created a barrel shaped droplet), creating various compound droplets of oil and water not previously reported in literature. This preferential droplet shape implies that whatever the initial substance wetting a filter, a substance with a greater preferential adherence to the fibre will displace the former one.  相似文献   

7.
Extensive experimental investigation of the wetting processes of fibre-liquid systems during air filtration (when drag and gravitational forces are acting) has shown many important features, including droplet extension, oscillatory motion, and detachment of drops from fibres as airflow velocity increases, and also movement or flow of droplets along fibres. A detailed experimental study of the processes was conducted using stainless steel filter fibres and H2O aerosol, which coalesce on the fibre to form clamshell droplets. The droplets were predominantly observed in the Reynolds transition flow region, since this is the region where most of the above features occur. The droplet oscillation is believed to be induced by the onset of the transition from laminar to turbulent flow as the increasing droplet size increases Reynolds number for the flow around the droplet. Two-dimensional flow in this region is usually modelled using the classical Karman vortex street, however there exist no 3D equivalents. Therefore to model such oscillation it was necessary to create a new conceptual model to account for the forces both inducing and preventing such oscillation. The agreement between the model and experimental results is very good for both the radial and transverse oscillations.  相似文献   

8.
The aim of this study was to compare the initial adhesion forces of the uropathogen Enterococcus faecalis with the medical-grade polymers polyurethane (PU), polyamide (PA), and poly(tetrafluoroethylene) (PTFE). To quantify the cell-substrate adhesion forces, a method was developed using atomic force microscopy (AFM) in liquid that allows for the detachment of individual live cells from a polymeric surface through the application of increasing force using unmodified cantilever tips. Results show that the lateral force required to detach E. faecalis cells from a substrate differed depending on the nature of the polymeric surface: a force of 19 +/- 4 nN was required to detach cells from PU, 6 +/- 4 nN from PA, and 0.7 +/- 0.3 nN from PTFE. Among the unfluorinated polymers (PU and PA), surface wettability was inversely proportional to the strength of adhesion. AFM images also demonstrated qualitative differences in bacterial adhesion; PU was covered by clusters of cells with few cell singlets present, whereas PA was predominantly covered by individual cells. Moreover, extracellular material could be observed on some clusters of PU-adhered cells as well as in the adjacent region surrounding cells adhered on PA. E. faecalis adhesion to the fluorinated polymer (PTFE) showed different characteristics; only a few individual cells were found, and bacteria were easily damaged, and thus detached, by the tip. This work demonstrates the utility of AFM for measurement of cell-substrate lateral adhesion forces and the contribution these forces make toward understanding the initial stages of bacterial adhesion. Further, it suggests that initial adhesion can be controlled, through appropriate biomaterial design, to prevent subsequent formation of aggregates and biofilms.  相似文献   

9.
Tan YC  Lee AP 《Lab on a chip》2005,5(10):1178-1183
Emulsions are widely used to produce sol-gel, drugs, synthetic materials, and food products. Recent advancements in microfluidic droplet emulsion technology has enabled the precise sampling and processing of small volumes of fluids (picoliter to femtoliter) by the controlled viscous shearing in microchannels. However the generation of monodispersed droplets smaller than 1 microm without surfactants has been difficult to achieve. Normally, the generation of satellite droplets along with parent droplets is undesirable and makes it difficult to control volume and purity of samples in droplets. In this paper, however, several methods are presented to passively filter out satellite droplets from the generation of parent droplets and use these satellite droplets as the source for monodispersed production of submicron emulsions. A passive satellite droplet filtration system and a dynamic satellite droplet separation system are demonstrated. Satellite droplets are filtered from parent droplets with a two-layer channel geometry. This design allows the creation and collection of droplets that are less than 100 nm in diameter. In the dynamic separation system, satellite droplets of defined sizes can be selectively separated into different collecting zones. The separation of the satellite droplets into different collecting zones correlates with the cross channel position of the satellite droplets during the breakup of the liquid thread. The delay time for droplets to switch between the different alternating collecting zones is nominally 1 min and is proportional to the ratio of the oil shear flows. With our droplet generation system, monodispersed satellite droplets with an average radius of 2.23 +/- 0.11 microm, and bidispersed secondary and tertiary satellite droplets with radii of 1.55 +/- 0.07 microm and 372 +/- 46 nm respectively, have been dynamically separated and collected.  相似文献   

10.
The detachment force required to pull a microparticle from an air-liquid interface is measured using atomic force microscopy (AFM) and the colloidal probe technique. Water, solutions of sodium dodecyl sulfate (SDS), and silicone oils are tested in order to study the effects of surface tension and viscosity. Two different liquid geometries are considered: the air-liquid interface of a bubble and a liquid film on a solid substrate. It was shown that detaching particles from liquid films is fundamentally different than from bubbles or drops due to the restricted flow of the liquid phase. Additional force is required to detach a particle from a film, and the maximum force during detachment is not necessarily at the position where the particle breaks away from the interface (as seen in bubble or drop systems). This is due to the dynamics of meniscus formation and viscous effects, which must be considered if the liquid is constrained in a film. The magnitude of these effects is related to the liquid viscosity, film thickness, and detachment speed.  相似文献   

11.
In this paper the problem of removing a spherical particle initially attached to a liquid-gas interface is analytically treated. In particular, the Derjaguin equation for small radii is used to derive a closed-form approximate expression for the work of detachment of the sphere from the interface. Expressions corresponding to the prescribed displacement condition and the applied force condition, which seems to be the relevant condition for the flotation separation process, are presented. A special effort has been made to closely compare analytical results with data obtained through the exact numerical treatment of the detachment process. Results show that proposed expressions are sufficiently accurate to calculate the energy required to detach the sphere from the interface as soon as the sphere radius is small compared to the capillary length. Validity limits are specified.  相似文献   

12.
Extensive experimental investigation of the wetting processes of fibre/liquid systems during air filtration (when drag and gravitational forces are acting) has shown many important features, including droplet extension, oscillatory motion, and detachment or flow of drops from fibres as airflow velocity increases. A detailed experimental study of the aforementioned processes was conducted using glass filter fibres and H(2)O aerosol, which coalesce on the fibre to form barrel droplets with small contact angles. The droplets were predominantly observed in the Reynolds transition (or unsteady laminar) flow region. The droplet oscillation appears to be induced by the onset of vortexes in the flow field around the droplet as the increasing droplet size increases the Reynolds number. Flow in this region is usually modelled using the classical two-dimensional Karman vortex street, and there exist no 3D equivalents. Therefore to model such oscillation it was necessary to create a new conceptual model to account for the forces both inducing and inhibiting such oscillation. The agreement between the model and experimental results is acceptable for both the radial and transverse oscillations.  相似文献   

13.
A quantitative method for measuring the shear force required to detach individual adhered bacteria using atomic force microscopy (AFM) was developed. By determining the total compression of the cantilever during cell detachment events, a more accurate means of calculating the applied lateral force necessary to remove individual cells was achieved compared to previous methods. In addition, a tunable assay for monitoring the dynamics of Pseudomonas aeruginosa and Staphylococcus aureus adhesion strength was employed. The accumulation of force measurements over time allowed for the characterization of adhesion strength kinetics. P. aeruginosa reinforced its adhesion to the surface at a rate 7-fold faster than for S. aureus; the average adhesion strength of P. aeruginosa was larger than that of S. aureus at corresponding time points. Adhered cells of the same species and strain demonstrated a range of adhesion forces that broadened with time, indicating that the change in adhesion strength does not proceed uniformly.  相似文献   

14.
Recent advances in atomic force microscopy (AFM) force measurement techniques have allowed the direct measurement and theoretical interpretation of the interaction between a liquid droplet and a solid surface or between two liquid droplets. In this study, we investigated the interaction across an aqueous thin film between fluorocarbon (perfluoropentane) droplets, hydrocarbon (tetradecane) droplets, and a droplet and a flat mica surface in the absence of stabilizers. It was found that even at a relatively elevated electrolyte concentration of 0.1 M NaNO3, depending on the solution pH, interactions between two identical droplets or a droplet and a mica surface could be repulsive. A simple theoretical analysis of the magnitude and range of these interactive forces suggests that the DLVO theory cannot explain the observed behavior. The measured force behavior is discussed in the context of ion adsorption, and the arising charging effects, at the bare oil-water interface.  相似文献   

15.
The ability to generate individual picoliter- and femtoliter-volume aqueous droplets on demand is useful for encapsulating and chemically manipulating discrete chemical and biological samples. This paper characterizes the effects of orifice dimensions and material choices on generating such droplets in an immiscible oil phase by using single high-voltage pulses with various amplitudes and durations. We have examined microfluidic orifices as small as 1.7 microm in equivalent radii and found that the electrohydrodynamic jet lengths and the subsequent formation of droplets are affected by the axial aspect ratios of the orifices (length of an orifice divided by its equivalent radius). As higher voltages were used to compensate for the increased capillary pressure and hydrodynamic resistance in ultrasmall orifices, we observed secondary jet protrusions and droplet formations that were not of classical electrohydrodynamic origin. The droplets generated from secondary jets traveled at relatively lower velocities as compared to those of electrohydrodynamic origin, and these slow individual droplets are potentially more useful for applications in microscale chemical reactions.  相似文献   

16.
This paper presents an electrical actuation scheme of dielectric droplet by negative liquid dielectrophoresis. A general model of lumped parameter electromechanics for evaluating the electromechanical force acting on the droplets is established. The model reveals the influence of actuation voltage, device geometry, and dielectric parameter on the actuation force for both conductive and dielectric medium. Using this model, we compare the actuation forces for four liquid combinations in the parallel-plate geometry and predict the low voltage actuation of dielectric droplets by negative dielectrophoresis. Parallel experimental results demonstrate such electric actuation of dielectric droplets, including droplet transport, splitting, merging, and dispending. All these dielectric droplet manipulations are achieved at voltages < 100 Vrms. The frequency dependence of droplet actuation velocity in aqueous solution is discussed and the existence of surfactant molecules is believed to play an important role by realigning with the AC electric field. Finally, we present coplanar manipulation of oil and water droplets and formation of oil-in-water emulsion droplet by applying the same low voltage.  相似文献   

17.
The static shape of droplets under electrowetting actuation is well understood. The steady-state shape of the droplet is obtained on the basis of the balance of surface tension and electrowetting forces, and the change in the apparent contact angle is well characterized by the Young-Lippmann equation. However, the transient droplet shape behavior when a voltage is suddenly applied across a droplet has received less attention. Additional dynamic frictional forces are at play during this transient process. We present a model to predict this transient behavior of the droplet shape under electrowetting actuation. The droplet shape is modeled using the volume of fluid method. The electrowetting and dynamic frictional forces are included as an effective dynamic contact angle through a force balance at the contact line. The model is used to predict the transient behavior of water droplets on smooth hydrophobic surfaces under electrowetting actuation. The predictions of the transient behavior of droplet shape and contact radius are in excellent agreement with our experimental measurements. The internal fluid motion is explained, and the droplet motion is shown to initiate from the contact line. An approximate mathematical model is also developed to understand the physics of the droplet motion and to describe the overall droplet motion and the contact line velocities.  相似文献   

18.
Surfactant-stabilized emulsion droplets were used as templates for the synthesis of hollow colloidal particles. Monodisperse silicone oil droplets were prepared by hydrolysis and polymerization of dimethyldiethoxysiloxane monomer, in the presence of surfactant: sodium dodecyl sulphate (SDS, anionic) or Triton X-100 (non-ionic). A sharp decrease in the average droplet radius with increasing surfactant concentration was found, with a linear dependence of the droplet radius on the logarithm of the surfactant concentration. The surfactant-stabilized oil droplets were then encapsulated with a solid shell using tetraethoxysilane, and hollow particles were obtained by exchange of the liquid core. The size and polydispersity of the oil droplets and the thickness of the shell were determined using static light scattering, and hollow particles were characterized by electron microscopy. Details on the composition of the shell material were obtained from energy-dispersive X-ray analysis. In the case of sodium dodecyl sulphate, the resulting shells were relatively thin and rough, while when Triton X-100 was used, smooth shells were obtained which could be varied in thickness from very thick ( approximately 150 nm) to very thin shells ( approximately 17 nm). Finally, hexane droplets were encapsulated using the same procedure, showing that our method can in principle be extended to a wide range of emulsions.  相似文献   

19.
The detachment of liquid droplets from porous material surfaces used with proton exchange membrane (PEM) fuel cells under the influence of a cross-flowing air is investigated computationally and experimentally. CCD images taken on a purpose-built transparent fuel cell have revealed that the water produced within the PEM is forming droplets on the surface of the gas-diffusion layer. These droplets are swept away if the velocity of the flowing air is above a critical value for a given droplet size. Static and dynamic contact angle measurements for three different carbon gas-diffusion layer materials obtained inside a transparent air-channel test model have been used as input to the numerical model; the latter is based on a Navier–Stokes equations flow solver incorporating the volume of fluid (VOF) two-phase flow methodology. Variable contact angle values around the gas–liquid–solid contact-line as well as their dynamic change during the droplet shape deformation process, have allowed estimation of the adhesion force between the liquid droplet and the solid surface and successful prediction of the separation line at which droplets loose their contact from the solid surface under the influence of the air stream flowing around them. Parametric studies highlight the relevant importance of various factors affecting the detachment of the liquid droplets from the solid surface.  相似文献   

20.
A new rotating membrane emulsification system using a stainless steel membrane with 100 microm laser drilled pores was used to produce oil/water emulsions consisting of 2 wt% Tween 20 as emulsifier, paraffin wax as dispersed oil phase and 0.01-0.25 wt% Carbomer (Carbopol ETD 2050) as stabilizer. The membrane tube, 1 cm in diameter, was rotated inside a stationary glass cylinder, diameter of 3 cm, at a constant speed in the range 50-1500 rpm. The oil phase was introduced inside the membrane tube and permeated through the porous wall moving radially into the continuous phase in the form of individual droplets. Increasing the membrane rotational speed increased the wall shear stress which resulted in a smaller average droplet diameter being produced. For a constant rotational speed, the average droplet diameter increased as the stabilizer content in the continuous phase was lowered. The optimal conditions for producing uniform emulsion droplets were a Carbomer content of 0.1-0.25 wt% and a membrane rotational speed of 350 rpm, under which the average droplet diameter was 105-107 microm and very narrow coefficients of variation of 4.8-4.9%. A model describing the operation is presented and it is concluded that the methodology holds potential as a manufacturing protocol for both coarse and fine droplets and capsules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号