首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Total syntheses of theaspirone (A and B) and vitispirane (A and B) are described. The key step in the syntheses is the palladium(II)-catalyzed intramolecular oxaspirocyclization of diene alcohol 4 to either vitispirane or the allylic alcohol 9. The outcome of the oxaspirocyclization is very much dependent on the solvent employed. In water-acetic acid (4:1) a 1:1 mixture of the diastereomeric alcohols 9A and 9B was exclusively formed. In water with 8 equiv of a strong non-nucleophilic acid, vitispiranes A and B (1:1) were obtained. An alternative procedure to obtain vitispirane with the use of LiCl and K(2)CO(3) is described. In the latter reaction vitispirane B is formed preferentially. This result is explained by an equilibrium between the two possible pi-allyl complexes 5A and 5B, the kinetically favored 5B being transformed into vitispirane 3B before isomerization to 5A occurs.  相似文献   

2.
Herein, an iron(II)-catalyzed biomimetic oxidation of N-heterocycles under aerobic conditions is described. The dehydrogenation process, involving several electron-transfer steps, is inspired by oxidations occurring in the respiratory chain. An environmentally friendly and inexpensive iron catalyst together with a hydroquinone/cobalt Schiff base hybrid catalyst as electron-transfer mediator were used for the substrate-selective dehydrogenation reaction of various N-heterocycles. The method shows a broad substrate scope and delivers important heterocycles in good-to-excellent yields.  相似文献   

3.
4.
Several palladium(II) and platinum(II) complexes of tripropylarsanes (AsR3; R = Pr, iPr) with the formulae, [MCl2(AsR3)2], [M2Cl2(μ‐Cl)2(AsR3)2], [Pd2Me2(μ‐Cl)2(AsR3)2], [Pd2X2(μ‐Pz)2(AsR3)2] (X = Cl or Me, Pz = pyrazolate), [Pd2Cl2(μ‐Y)2(AsR3)2] (Y = OAc or SPh), [MCl(S2CNEt2)(AsR3)] and [PdCp(Cl)(AsiPr3)] (M = Pd or Pt) have been prepared. All the complexes have been characterised by elemental analyses, IR and 1H NMR spectroscopy. The stereochemistry of the complexes has been deduced from the spectroscopic data. The structures of [Pd2Me2(μ‐X)2(AsiPr3)2] (X = Cl or Pz) have been established by single crystal X‐ray diffraction analyses. Both of the complexes have sym‐trans configuration. Strong trans influence of the methyl group is reflected on the Pd—X bond distances.  相似文献   

5.
Zengming Shen 《Tetrahedron》2006,62(47):10896-10899
An efficient method for the synthesis of 2,3-disubstituted indoles with high selectivity from 2-ethynylaniline derivatives and α,β-unsaturated carbonyl compounds was developed. This Pd(II)-catalyzed reaction involves tandem intramolecular aminopalladation, olefin insertion and protonolysis of the carbon-palladium bond with the regeneration of Pd(II) species in the presence of halide ions.  相似文献   

6.
Manganese(III) porphyrin chloride complexes have been developed for the first time as catalysts for the acceptorless dehydrogenative coupling of alcohols and amines. The reaction has been applied to the direct synthesis of imines, tertiary amines and quinolines where only hydrogen gas and/or water are formed as the by-product(s). The mechanism is believed to involve the formation of a manganese(III) alkoxide complex which degrades into the aldehyde and a manganese(III) hydride species. The latter reacts with the alcohol to form hydrogen gas and thereby regenerates the alkoxide complex.  相似文献   

7.
The reactions of platinum(II) iodide with triethyl‐ or trimethylsulfonium iodide in acetonitrile solution lead to the formation of crystalline products (Et3S)2[PtI6] ( 1 ) and [Me3S]2[PtI6]·CH3CN ( 2 ), respectively. The formation of Pt(IV) complexes may be explained either by disproportionation of PtI2 or oxidation by oxygen. Palladium(II) iodide reacts with triethylsulfonium iodide to give the palladium(II) complex (Et3S)2[PdI4] ( 3 ). The crystal structures of 1 – 3 were determined by single‐crystal X‐ray diffraction. In the crystal structures, the compounds 2 and 3 exhibit an extensive hydrogen‐bonding network.  相似文献   

8.

Two new co-ordination compounds of PdII with 1-vinylimidazole of the formulae [PdL4]Cl2·3H2O and trans-[PdL2Cl2], where L is a 1-vinylimidazole molecule, have been obtained. The compounds were characterised by spectroscopic, molar conductivity, thermogravimetric and magnetochemical measurements. Single crystal X-ray structure analyses of the complexes were also carried out. The compounds are diamagnetic with square-planar coordinatination around the palladium(II) ions. Other physico-chemical properties of the both complexes are compatible with their structures.  相似文献   

9.
10.
Jeong Hwan Koh 《Tetrahedron》2004,60(34):7405-7410
A catalytic oxidative polycyclization reaction initiated by the carbocyclization of 1,5-dienes with Pd(II) is reported. Trapping of a putative carbocation with suitable functional groups (phenols, alkenes, alcohols, sulfonamide), or rearrangement protocols (Pinacol) yields poly-cyclic products in good yields and in excellent diastereoselectivities. Turnover of the intermediate Pd-C bond is via β-H elimination.  相似文献   

11.
An efficient and stereoselective synthesis of pyrrolidine-, piperidine-, and azepane-type N-heterocycles is described by the intramolecular Pd(0)-catalysed cyclisation of amino allylic carbonates. The use of chiral ligands gave the corresponding heterocyclic derivatives having er values that were from moderate to good.  相似文献   

12.
2,6-Bis(2,5-diphenylphospholyl-1-methyl)pyridine (2) was prepared from the reaction of 2,5-diphenylphospholide anion with 2,6-bis(chloromethyl)pyridine. The X-ray crystal structure of 2 was recorded. Reaction of 2 with [Pd(COD)Cl2] in the presence of AgBF4 yields the cationic complex [Pd(2)Cl][BF4] (3). The analogous Ni complex [Ni(2)Br][BF4] (4) was prepared in a similar way by reacting ligand 2 with [NiBr2(DME)] in the presence of AgBF4 and its formulation was confirmed by an X-ray crystal structure study. Complex 3 efficiently catalyzes the coupling between pinacolborane and iodo and bromoarenes with good TON (up to 1 × 105 with iodo derivatives and 8.9 × 103 with bromo derivatives).  相似文献   

13.
The PdII‐catalyzed dehydroboration of boron enolates generated from ketones and 9‐iodo‐9‐borabicyclo[3.3.1]nonane was achieved, providing a synthetically versatile protocol from ketones to α,β‐unsaturated ketones. The PdII compound employed in this reaction worked catalytically in the presence of Cu(OAc)2. The high trans‐selectivity of the olefinic moiety was observed. Aryl halide moieties (‐Br and ‐Cl) remained intact for this reaction in spite of the presence of a Pd species. An ester substrate could also be applied when a stoichiometric amount of PdII was used. The crossover reactions using boron and silyl enolates revealed that the oxidation reaction is much faster than the Saegusa‐Ito reaction.  相似文献   

14.
A diselenide, (MeOOCCH2CH2Se)2 (1) has been prepared by esterification of (HOOCCH2CH2Se)2 in methanol. The reductive cleavage of Se-Se bond in 1 by NaBH4 in methanol generates MeOOCCH2CH2SeNa. The latter in different stoichiometries reacts with [M2Cl2(μ-Cl)2(PR3)2] to give a variety of products of compositions [M2Cl2(μ-SeCH2CH2COOMe)2(PR3)2] (2); [M2Cl2(μ-Cl)(μ-SeCH2CH2COOMe)(PR3)2] (3); [Pd2(SeCH2CH2COOMe)2(μ-SeCH2CH2COOMe)2(PR3)2] (4);[Pd3Cl2(μ-SeCH2CH2COOMe)4(PR3)2] (5). Treatment of complexes 2 with [M2Cl2(μ-Cl)2(PR3)2] affords complexes 3 in nearly quantitative yield. The formation of various products in these reactions is sensitive to stoichiometric ratio of reactants employed. This enables interconversion of various complexes by manipulating mole ratios of appropriate starting materials. A homoleptic palladium complex, [Pd(SeCH2CH2COOMe)2]6 (6) was isolated from a reaction between Na2PdCl4 and MeOOCCH2CH2SeNa. All these complexes have been characterized by elemental analysis, IR, UV-Vis and NMR (1H, 13C, 31P, 77Se, 195Pt) spectroscopy. Structures of trans-[Pd2Cl2(μ-SeCH2CH2COOMe)2(PPh3)2] (2d), [Pt2Cl2(μ-Cl)(μ-SeCH2CH2COOMe)(PnPr3)2] (3e), [Pd3Cl2(μ-SeCH2CH2COOMe)4(PnPr3)2] (5) and [Pd(SeCH2CH2COOMe)2]6 (6) have been established unambiguously by X-ray crystallography. In these complexes, there are bridging selenolate ligands with their uncoordinated ester groups. Compound 6 has a centrosymmetric Pd6Se12 hexagon in which every two palladium atoms are bridged by selenolate ligands. Thermal behaviour of some complexes has been investigated. Pyrolysis of compound 2b in tributylphosphate at 195 °C gave Pd17Se15 nanoparticles which were characterized by XRD and EDAX.  相似文献   

15.
The bis(diamine)palladium(II) cations (diamine = ethane-1,2-diamine, propane-1,3-diamine, or butane-1,4-diamine) all undergo condensation reactions with formaldehyde and nitroethane to produce macromonocycles where each pair of cis-disposed primary amines has been converted to a -NH-CH(2)-C(CH(3))(NO(2))-CH(2)-NH- strap. The 14-membered-ring macrocycle has been previously prepared by condensation around copper(II) and nickel(II), but this does not permit synthesis of the larger ring macrocycles. The macrocyclic complex (6,13-dimethyl-6, 13-dinitro-1,4,8,11-tetraazacyclotetradecane)palladium(II) perchlorate crystallizes in the triclinic space group P&onemacr;, a = 8.105(3) ?, b = 8.370(2) ?, c = 9.437(4) ?, alpha = 69.04(3) degrees, beta = 68.60(3), gamma = 71.53(3) degrees. Complexes of the 16- and 18-membered macrocycles (3,11-dimethyl-3,11-dinitro-1,5,9,13-tetraazacyclohexadecane)palladium(II) perchlorate and (3,12-dimethyl-3,12-dinitro-1,5,10,14-tetraaazacyclooctadecane)palladium(II) perchlorate crystallize in the monoclinic space group P2(1)/c, with a = 8.391(2) ?, b = 12.816(3) ?, c = 23.925(9) ?, and beta = 93.18(2) degrees, and the triclinic space group P&onemacr;, with a = 7.746(5) ?, b = 9.912(5) ?, c = 18.96(2) ?, alpha = 91.76(6) degrees, beta = 101.73(7) degrees, and gamma = 112.83(5) degrees respectively. The larger macrocycles are "swollen" by incorporating longer methylene chains, "swelling" leading to an increase in Pd-N distance and in tetrahedral distortion, with the dominant geometric isomer apparently changing with macrocycle size from anti-disposed nitro pendants (14-membered) to the syn isomer (16-, 18-membered). An irreversible Pd(II/IV) oxidation occurs at ca +1 V (vs Ag/AgCl), varying slightly with ring size, with a multi-electron nitro group reduction observed near -0.8 V in each case. Electronic spectra also vary slightly with ring size.  相似文献   

16.
17.
18.
Palladium(II) complexes of type [Pd(L)Cl2] [where, L?=?benzaldehyde-1,1-diphenyl-2-thiohydrazone (L1), salicylaldehyde-1,1-diphenyl-2-thiohydrazone (L2), acetaphenone-1,1-diphenyl-2-thiohydrazone (L3) and cyclohexanone-1,1-diphenyl-2-thiohydrazone (L4)] have been synthesized. The thiohydrazones can exist as thione-thiol tautomers and coordinate as a bidentate N–S ligand. The ligands are found to be monobasic bidentate. The complexes have been characterized by elemental analysis, IR, mass, electronic, 1H NMR spectroscopic studies. In vitro antifungal studies against fungi Aspergillus fumigatus, Aspergillus flavus and Aspergillus niger for some complexes have also been carried out.  相似文献   

19.
Reaction of PdCl2(CH3CN)2 with the sodium salt of 5‐mercapto‐1‐methyltetrazole (MetzSNa) in methanol solution affords an interesting dinuclear palladium complex [Pd2(MetzS)4 ] ( 1 ). However, treatment of PdCl2(CH3CN)2 with neutral MetzSH ligand in methanol solution produces a mononuclear palladium complex [Pd(MetzSH)4]Cl2 ( 2 ). Both complexes were characterized by IR, 1HNMR, UV‐Vis spectroscopy as well as X‐ray crystallography. Single‐crystal X‐ray diffraction analyses of two complexes lead to the elucidation of the structures and show that 1 possesses an asymmetric structure: one Pd atom is tetracoordinated by three sulfur atoms and one nitrogen atom to form PdS3N coordination sphere, the other Pd atom is tetracoordinated by three nitrogen atoms and one sulfur atom to form PdSN3 coordination sphere. The molecules of 1 are associated to 1‐D infinite linear chain by weak intermolecular Pd···S contacts in the crystal lattice. In 2 , the Pd atom lies on an inversion center and has a square‐planar coordination involving the S atoms from four MetzSH ligands. The two chloride ions are not involved in coordination, but are engaged in hydrogen bonding.  相似文献   

20.
Some halo or mercaptide bridged palladium (II) dimers, [Pd(S2CNR2)X]3 (R=ibutyl, X=Cl, Br, I, S-ethyl and S-t-butyl) were studied by variable temperature 1H nmr spectroscopy. Line shape changes of the chloro and bromo bridged dimers were interpretated by the solvolytic breaking of the Pd-X bond, while mercaptide bridged complexes were explained in terms of slow N-C single bond rotation. The results consist with the strengthness of the class b metal ion with various soft donor ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号