首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of platinum(II) complexes supported by terphenyl diacetylide as well as diimine or bis-N-heterocyclic carbene (NHC) ligands have been prepared. The diacetylide ligands adopt a cis coordination mode featuring non-planar terphenyl moieties as revealed by X-ray crystallographic analyses. The electrochemical, photophysical and photochemical properties of these platinum(II) complexes have been investigated. These platinum(II) diimine complexes show broad emission with peak maxima from 566 nm to 706 nm, with two of them having emission quantum yields >60% and lifetimes <2 μs in solutions at room temperature, whereas the platinum(II) diacetylide complexes having bis-N-heterocyclic carbene instead of diimine ligand display photoluminescence with quantum yields of up to 28% in solutions and excited state lifetimes of up to 62 μs at room temperature. Application studies revealed that one of the complexes can catalyze photoinduced aerobic dehydrogenation of alcohols and alkenes, and a relatively non-toxic water-soluble Pt(II) complex displays anti-angiogenic activity.  相似文献   

2.
Nitreones are compounds with oxidation state 1 at the nitrogen, these compounds carry formal positive charge as well as two lone pairs of electrons at nitrogen center. These compounds are also known as divalent NI compounds and can be represented with the general formula L → N+ ← L, where L is an electron donating ligand. In the recent past, several divalent NI compounds have been reported with L = N-heterocyclic carbene (NHC), remote N-heterocyclic carbene (rNHC), carbocyclic carbene (CCC) and diaminocarbene. Recently, our group reported that a novel six-membered CCC (cyclohexa-2,5-diene-4-[diaminomethynyl]-1-ylidene) can stabilize N+ center in nitreones. As an independent carbene, this species is very unstable. In this work, modulation of this CCC using (a) annulation, (b) heterocyclic ring modification, (c) substitutions adjacent to the carbenic carbon, (d) exocyclic double bond insertion and (e) ring contraction, has been reported. These modulations and quantum chemical analyses helped in the identification of five new six-membered CCCs which carry improved donation and stability properties. Further, these CCCs were employed in the design of new divalent NI compounds (nitreones) which carry coordination bonds between ligands and N+ center. The molecular and electronic structure properties, and the donor→acceptor coordination interactions present in the resultant low oxidation state divalent NI compounds have been explored.  相似文献   

3.
N-heterocyclic carbene ligands (NHC) are widely utilized in catalysis and material science. They are characterized by their steric and electronic properties. Steric properties are usually quantified on the basis of their static structure, which can be determined by X-ray diffraction. The electronic properties are estimated in the liquid state; for example, via the 77Se liquid state NMR of Se-NHC adducts. We demonstrate that 77Se NMR crystallography can contribute to the characterization of the structural and electronic properties of NHC in solid and liquid states. Selected Se-NHC adducts are investigated via 77Se solid state NMR and X-ray crystallography, supported by quantum chemical calculations. This investigation reveals a correlation between the molecular structure of adducts and NMR parameters, including not only isotropic chemical shifts but also the other chemical shift tensor components. Afterwards, the liquid state 77Se NMR data is presented and interpreted in terms of the quantum chemistry modelling. The discrepancy between the structural and electronic properties, and in particular the π-accepting abilities of adducts in the solid and liquid states is discussed. Finally, the 13C isotropic chemical shift from the liquid state NMR and the 13C tensor components are also discussed, and compared with their 77Se counterparts. 77Se NMR crystallography can deliver valuable information about NHC ligands, and together with liquid state 77Se NMR can provide an in-depth outlook on the properties of NHC ligands.  相似文献   

4.
A series of tetracyanoruthenate(II) with chelating pyridyl N‐heterocyclic carbene ligands (NHC‐py) was synthesized and characterized. Their photophysical and electrochemical properties as well as the photochromic behavior of their dithienylethene‐containing complexes were studied. Photocyclization was found to take place upon irradiation into the metal‐to‐ligand charge transfer (MLCT) absorption bands of these complexes, and evidence is provided to support the triplet‐sensitizing reaction pathway.  相似文献   

5.
Two C^C* cyclometalated platinum(II) N‐heterocyclic carbene (NHC) complexes with the general formula [(C^C*)Pt(O^O)] (C^C*=1‐dibenzofuranyl‐3‐methylbenzimidazolylidene; O^O=dimesitoylmethane) have been synthesized and extensively characterized, including solid‐state structure determination, 195Pt NMR spectroscopy, and 2D NMR (COSY, HSQC, HMBC, NOESY) spectroscopy to elucidate the impact of their structural differences. The two regioisomers differ in the way the dibenzofuranyl (DBF) moiety of the NHC ligand is bound to the metal center, which induces significant changes in their physicochemical properties, especially on the decay time of the excited state. Quantum yields of over 80 % and blue emission colors were measured.  相似文献   

6.
A luminescent bimetallic AuI complex comprised of N-heterocyclic carbene (NHC) and carbazole (Cz) ligands, that is, (NHC’)Au(NHC)AuCz has been synthesized and studied. Both carbene ligands in the bimetallic complex act as electron acceptors in tandem to increase the energy separation between the ground and excited state, which is higher than those found in either monometallic analogue, (NHC)AuCz and (NHC’)AuCz. A coplanar geometry designed into the tandem complex ensures sufficient electronic coupling between the π-orbitals of the ligands to impart a strong oscillator strength to the singlet intra-ligand charge-transfer (1ICT) transition. Theoretical modelling indicates that the emissive ICT excited state involves both NHC ligands. The tandem complex gives blue luminescence (λmax=480 nm) with a high photoluminescent quantum yield (ΦPL=0.80) with a short decay lifetime (τ=0.52 μs). Temperature-dependent photophysical studies indicate that emission is via thermally assisted delayed fluorescence (TADF) and give a small singlet-triplet energy difference (ΔEST=50 meV, 400 cm−1) consistent with the short TADF lifetime.  相似文献   

7.
N-杂环卡宾铜化合物具有简便易得,价廉低毒,性质稳定,结构类型多样并易于修饰等诸多优点,在很多领域具有重要的应用价值,因此铜的N-杂环卡宾化学在过去十几年中得到了快速发展。本文结合我们的工作,总结铜N-杂环卡宾化合物的合成方法、结构特点、转移卡宾配体用于合成其它金属卡宾化合物以及催化应用。  相似文献   

8.
Platinum (II) complexes bearing N‐heterocyclic carbene (NHC) ligands have been widely used in catalytic chemistry, but there are very few reports of biological properties of this type of complexes. A series of [PtCl2(NHC)(PEt3)] complexes were synthesized. The structures of all compounds were characterized by 1H‐NMR, 13C‐NMR, IR and elemental analysis techniques, which supported the proposed structures. The single crystal structures of complexes 1a and 1e were determined. The title complexes show slightly distorted square‐planar coordination around the platinum (II) metal center. The cytotoxic properties of the platinum (II)–NHC complexes have been assessed in various human cancer lines, including cisplatin‐sensitive and resistant cells. IC50 values of these four complexes were determined by the MTS‐based assay on three human cell lines—brain (SHSY5Y), colon (HTC116) and liver (HEP3B). These complexes have been highlighted cancer therapeutic agent with unique structures and functions.  相似文献   

9.
A new N-heterocyclic carbene (NHC) containing a fused bithiophene backbone has been synthesized along with its silver(I) and BPh(3) complexes. The donor strength of this unique NHC has been determined from the IR stretching frequencies of the isolated NHC-Rh(CO)(2)Cl complex. The photophysical properties of all of the novel compounds have been investigated and are presented.  相似文献   

10.
The N-heterocyclic carbene stabilized phosphinidenides (SIMes)PK [SIMes = 1,3-bis(2,4,6-trimethylphenyl)imidazolidine-2-ylidene] and (SIDipp)PK [SIDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolidine-2-ylidene] were used as precursors in salt elimination reactions with MCl3 (M = Al, Ga) in order to obtain new group 13 phosphinidenide compounds. The new compounds [(NHC)PMCl2]2 (NHC = SIMes, SIDipp; M = Al, Ga) exhibit dimerization in solid state as well as in solution and show different shapes of the central M2P2 cycle (butterfly or nearly square planar conformation) in solid state, depending on the size of the NHC ligand bound to the phosphorus atom.  相似文献   

11.
A series of piano-stool Ru−NHC (NHC=N-heterocyclic carbene) complexes have been prepared and characterized. The NHC ligands used herein have varying wingtip groups, showing the impact of steric congestion on the selectivity for the catalytic dimerization of terminal alkynes.  相似文献   

12.
This work describes the synthesis and characterization of two new bis-terdentate Ru(II) complexes. Compound 1 is a homoleptic complex containing two CNC N-heterocyclic carbene (NHC) based ligands, whereas compound 2 bears one CNC ligand and an ancillary terpyridine ligand. The redox and photophysical properties of both compounds have been investigated and their X-ray crystal structures determined. Complex 1 displays a close-to-perfect octahedral coordination geometry and is not luminescent at room temperature while complex 2 features room temperature and 77 K luminescence despite its partially distorted geometry. The presence of the NHC moieties brings a significant amount of electronic density to the metal centre therefore lowering its oxidation potential with respect to that of analogous polypyridyl complexes.  相似文献   

13.
Three four-coordinate N-heterocyclic carbene (NHC) copper(I) complexes, [Cu(Py-Im)(POP)](PF6) (P1), [Cu(Py-BenIm)(POP)](PF6) (P2), and [Cu(Py-c-BenIm)(POP)](PF6) (P3) (Py-Im = 3-methyl-1-(pyridin-2-yl)-1H-imidazolylidene, Py-BenIm = 3-methyl-1-(pyridin-2-yl)-1H-benzo[d]imidazolylidene, Py-c-BenIm = 3-methyl-1-(pyridin-2-ylmethyl)-1H-benzo[d]imidazolylidene, POP = bis([2-diphenylphosphino]-phenyl)ether), have been synthesized without transmetalation of the NHC–Ag(I) complex for the first time. The photophysical properties of the resultant NHC–Cu(I) complexes have been systematically investigated via spectroscopic methods. All complexes exhibit good photoluminescence properties with long excited-state lifetimes and moderate quantum yields. Density functional theory and time dependent density functional theory calculations were employed to rationalize the photophysical properties of the NHC–Cu(I) complexes.  相似文献   

14.
Novel 1/1 adducts of organolead(IV) and organothallium(III) chlorides with the complexes N,N′-ethylenebis(salicylideneiminato)nickel(II) and bis(β-mercaptoethylamine)nickel(II) have been synthesized. Their configurations have been investigated in the solid state by IR and electronic spectroscopy and by magnetic measurements.  相似文献   

15.
Ru(II) complexes 1 – 3 bearing various N‐heterocyclic carbene (NHC) ligands were synthesized, and their photophysical, electrochemical, and electrogenerated chemiluminescence (ECL) properties were discussed to evaluate a potential of their use as multicolor ECL labels. Interestingly, they exhibited ECL emission ranging from greenish‐yellow to red both in nonaqueous and mixed aqueous solutions, which might show the potential of the Ru(II) complexes as multicolor ECL labels.  相似文献   

16.
Coupling between 5-bromoimidazo[1,5-a]pyridinium salts and malonate or arylacetate esters leads to a facile and straightforward access to the new mesoionic, fused, tricyclic system of imidazo[2,1,5-cd]indolizinium-3-olate. Mechanistic studies show that the reaction pathway consists of nucleophilic aromatic substitution on the cationic, bicyclic heterocycle by an enolate-type moiety and in the nucleophilic attack of a transient free N-heterocyclic carbene (NHC) species on the ester group; the relative order of these two steps depends on the nature of the starting ester. This work highlights the valuable implementation of free NHC species as key intermediates in synthetic chemistry, beyond their classical use as stabilizing ligands or organocatalysts.  相似文献   

17.
The first enantiopure chiral‐at‐rhenium complexes of the form fac‐ReX(CO)3(:C^N) have been prepared, where :C^N is a helicene‐N‐heterocyclic carbene (NHC) ligand and X=Cl or I. These have complexes show strong changes in the emission characteristics, notably strongly enhanced phosphorescence lifetimes (reaching 0.7 ms) and increased circularly polarized emission (CPL) activity, as compared to their parent chiral models lacking the helicene unit. The halogen along with its position within the dissymmetric stereochemical environment strongly affect the photophysics of the complexes, particularly the phosphorescence quantum yield and lifetime. These results give fresh insight into fine tuning of photophysical and chiroptical properties of Re‐NHC systems.  相似文献   

18.
N-Heterocyclic carbenes (NHCs) are an important class of reactive organic molecules used as ligands, organocatalysts, and σ-donors in a variety of electroneutral ylide or betaine adducts with main-group compounds. An emerging class of betaine adducts made from the reaction of NHCs with carbodiimides (CDIs) form zwitterionic amidinate-like structures with tunable properties based on the highly modular NHC and CDI scaffolds. The adduct stability is controlled by the substituents on the CDI nitrogens, while the NHC substituents greatly affect the configuration of the adduct in the solid state. This Perspective is intended as a primer to these adducts, touching on their history, synthesis, characterization, and general properties. Despite the infancy of the field, NHC–CDI adducts have been applied as amidinate-type ligands for transition metals and nanoparticles, as junctions in zwitterionic polymers, and to stabilize distonic radical cations. These applications and potential future directions are discussed.

N-heterocyclic carbene-carbodiimide betaine adducts are zwitterionic amidinate-like structures with tunable properties that have applications as ligands, junctions in supramolecular polymers, and stabilizers for radical cations.  相似文献   

19.
A new synthetic route to complexes of the cationic N‐heterocyclic carbene ligand 2 has been developed by the attachment of a cationic pentamethylcyclopentadienylruthenium ([RuCp*]+) fragment to a metal‐coordinated benzimidazol‐2‐ylidene ligand. The coordination chemistry and the steric and electronic properties of the cationic carbene were investigated in detail by experimental and theoretical methods. X‐ray structures of three carbene–metal complexes were determined. The cationic ligand 2 is a poorer overall electron donor relative to the related neutral carbene, which is evident from cyclic voltammetry (CV) and IR measurements.  相似文献   

20.
Molecular recognition continues to be an area of keen interest for supramolecular chemists. The investigated [M( L )2]2+ metallo‐ligands (M=PdII, PtII, L =2‐(1‐(pyridine‐4‐methyl)‐1 H‐1,2,3‐triazol‐4‐yl)pyridine) form a planar cationic panel with vacant pyridyl binding sites. They interact with planar neutral aromatic guests through π–π and/or metallophilic interactions. In some cases, the metallo‐ligands also interacted in the solid state with AgI either through coordination to the pendant pyridyl arms, or through metal–metal interactions, forming coordination polymers. We have therefore developed a system that reliably recognises a planar electron‐rich guest in solution and in the solid state, and shows the potential to link the resultant host–guest adducts into extended solid‐state structures. The facile synthesis and ready functionalisation of 2‐pyridyl‐1,2,3‐triazole ligands through copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) “click” chemistry should allow for ready tuning of the electronic properties of adducts formed from these systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号