首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we demonstrate a simple and sensitive colorimetric detection of cysteine based on the cysteine-mediated color change of ssDNA-stabilized gold nanoparticles (AuNPs). Cysteine is capable of absorbing onto AuNPs surfaces via the strong interaction between its thiol group and gold. ssDNA molecules which stabilize AuNPs against salt-induced aggregation are removed away by cysteine encapsulation on the AuNPs surfaces, resulting in a characteristic color change of AuNPs from red to blue as soon as salt is added. The ratio of absorptions at 640 to 525 nm (A 640/A 525) is linear dependent on the cysteine concentration in the range from 0.1 to 5 μM. Furthermore, amino acids other than cysteine cannot mediate the color change under the identical conditions due to the absence of thiol groups, suggesting the selectivity of the proposed method toward cysteine. The employment of complicated protocols and sophisticated processes such as the preparation of modified AuNPs are successfully avoided in design to realize the simple and low-cost cysteine detection; and the high sensitivity and low cost of the method is favorable for practical applications. Figure In the presence of cysteine, cysteine binds to the AuNPs surface via Au-S bond, spontaneously driving ssDNA molecules away from the nanoparticles, which leads to the AuNPs aggregation under the condition of NaCl introduction, and the corresponding color change from red to blue. However, the presence of other amino acids results in no color change due to the absence of thiol groups. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
A label-free strategy based on Fenton reaction with unmodified gold nanoparticles (AuNPs) as probe is demonstrated for ascorbic acid (AA) sensing. AuNPs is stable in the presence of single stranded DNA (ssDNA) which prevents salt-induced aggregation of AuNPs in solution. The hydroxyl free radicals generated by Fenton reaction lead to ssDNA cleavage into different sequence fragments which induce aggregation of AuNPs to produce a red-to-blue color change. As an efficient biological antioxidant, AA could effectively scavenge free radicals to avoid the cleavage of ssDNA, so that it prevents color change of the AuNPs solution. Thus, the color change of AuNPs in the presence and absence of AA provides a new approach for the detection of AA. The absorbance ratio at two wavelengths, A670/A520, decreases linearly with AA content within 1–15 μM, giving rise to a detection limit of 0.3 μM and a RSD of 2.8% (10 μM). The color display of AuNPs solution makes it feasible for the estimation of AA content by naked eye visualization. Moreover, based on Fenton reaction and unmodified gold nanoparticles, a multiple logic gate system includes two logic operations, i.e., INHIBIT and NOR, has been designed with small molecules (AA, l-cysteine, glutathione) as inputs and the colorimetric changes of AuNPs solution as outputs.  相似文献   

3.
A poly(2‐aminophenylbenzimidazole)/gold nanoparticles (P2AB/AuNPs) coated disposable pencil graphite electrode (PGE) was fabricated as an enzyme‐free sensor for the H2O2 determination. P2AB/AuNPs and P2AB were successfully synthesized electrochemically on PGE in acetonitrile for the first time. The coatings were characterized by scanning electron microscopy, X‐ray diffraction spectroscopy, Energy‐dispersive X‐ray spectroscopy, Surface‐enhanced Raman spectroscopy, and UV‐Vis spectroscopy. AuNPs interacted with P2AB as carrier enhances the electrocatalytic activity towards reduction of H2O2. The analytical performance was evaluated in a 100 mM phosphate buffer solution at pH 6.5 by amperometry. The steady state current vs. H2O2 concentration is linear in the range of 0.06 to 100 mM (R2=0.992) with a limit of detection 3.67×10?5 M at ?0.8 V vs. SCE and no interference is caused by ascorbic acid, dopamine, uric acid, and glucose. The examination for the sensitive determination of H2O2 was conducted in commercially available hair oxidant solution. The results demonstrate that P2AB/AuNPs/PGE has potential applications as a sensing material for quantitative determination of H2O2.  相似文献   

4.
An activated ferrocenyl enone (1) by an intramolecular hydrogen bond was utilized as a Michael acceptor type of chemodosimeter for cysteine. The probe has shown selective response toward cysteine over other natural amino acids through the Michael addition reaction of a cysteinyl thiol group to 1. When cysteine was added, the prominent color change of 1 was observed so that submillimolar concentrations of cysteine were detectable by the naked eye.  相似文献   

5.
A new technique that uses gold immunochromatographic strips enhances the detection sensitivity by inducing the clustering of additional gold nanoparticles (AuNPs) around the immunogold particles immobilized on nitrocellulose strips. The additional AuNPs provide an intense signal that can be detected by the naked eye. The AuNPs were synthesized and conjugated to monoclonal antibodies using self-assembly. Other antibodies were immobilized in a defined detection zone on the nitrocellulose membrane. The detection principle is based on a “sandwich” immunoreaction, where gold-labeled antibodies serve as signal vehicles. To improve the sensitivity of the strips, we use a mixture of 1% HAuCl4 and 10 mmol L−1 NH2OH·HCl to “enlarge” the gold nanoparticles. The detecting limits of Avian influenza virus (AIV) and Newcastle disease virus (NDV) are significantly increased. Compared with commercial test strips, this method is 100-fold more sensitive. This method is easy to perform and can be carried out on-site in test laboratories.  相似文献   

6.
Xue Y  Zhao H  Wu Z  Li X  He Y  Yuan Z 《The Analyst》2011,136(18):3725-3730
We have developed a colorimetric assay for the highly sensitive and selective detection of Cd(2+) using gold nanoparticles (AuNPs) cofunctionalized with 6-mercaptonicotinic acid (MNA) and L-Cysteine (L-Cys) through the formation of an Au-S bond. In the presence of Cd(2+), the aggregation of functionalized AuNPs occurred by means of a metal-ligand interaction that led to visible color changes. Most importantly, cofunctionalized AuNPs had better responses for Cd(2+) than that functionalized by either MNA or L-Cys. Cd(2+) could be detected by the colorimetric response of AuNPs that could be detected by the naked eye or a UV-vis spectrophotometer. The absorbance ratio (A(620)/A(523)) was linear with the Cd(2+) concentration in the range of 2.0 × 10(-7) to 1.7 × 10(-6) M. Under optimum conditions (2.0 × 10(-5) M MNA, 2.0 × 10(-6) M L-Cys and 0.020 M NaCl at pH 10.0), the detection limit (3σ) of Cd(2+) could be as low as 1.0 × 10(-7) M. Interference experiments showed that Pb(2+) and Cu(2+) caused a slight interference for Cd(2+) determination while other metal ions caused no interference. The proposed method was successfully applied to determine the concentration of Cd(2+) in environmental samples (lake water).  相似文献   

7.
Following the recent discovery that traditional silver(I) oxide-promoted glycosidations of glycosyl bromides (Koenigs–Knorr reaction) can be greatly accelerated in the presence of catalytic TMSOTf, reported herein is a dedicated study of all major aspects of this reaction. A thorough investigation of numerous silver salts and careful refinement of the reaction conditions led to an improved mechanistic understanding. This, in turn, led to a significant reduction in the amount of silver salt required for these glycosylations. The progress of this reaction can be monitored by naked eye, and the completion of the reaction can be judged by the disappearance of characteristic dark color of Ag2O. Further evidence on higher reactivity of benzoylated α-bromides in comparison to that of their benzylated counterparts has been acquired.  相似文献   

8.
研究了一种基于双配体(巯基嘌呤(MP)和多肽CALNN)修饰金纳米粒子(AuNPs)的比色方法,用于快速、选择性地检测水溶液中的Cd2+。 其中,MP作为功能配体通过N原子与Cd2+发生配合作用,从而引起AuNPs聚集;CALNN配体有助于提高体系的稳定性和选择性。 当体系中无Cd2+时,溶液呈红色,随着Cd2+浓度的增加,溶液颜色逐渐由红色变为蓝紫色,这种颜色变化可以通过光谱测定还可以用肉眼直接观察。 该方法操作简便,具有较好的选择性和较快的响应速度(<5 min),其检测限达到350 nmol/L。  相似文献   

9.
A simple, cost-effective and rapid method for visual detection of arginine based on the citrate-capped gold nanoparticles (AuNPs) aggregation has been developed in this paper. Arginine is the only amino acid with guanidino group, and has the highest isoelectric point (pI) at about 10.8. At pH 9.62, negatively charged citrate-capped AuNPs are well dispersed because of strong electrostatic repulsion. However, positively charged arginine (pH < pI) easily induces negatively charged citrate-capped AuNPs aggregation through electrostatic and hydrogen-bonding interactions, resulting in a red to blue color change of the solution. Using a UV–vis spectrophotometer, the method enables the detection of arginine in the range of 0.08–13.2 μM with a detection limit (3σ/slope) of 16 nM. Particularly, as low as 0.4 μM arginine can be easily detected by the naked eye without using any complicated or expensive instruments. Furthermore, this method can provide satisfactory results for the determination of arginine in arginine injection and compound amino acid injection samples.  相似文献   

10.
An unmodified gold nanoparticle-based colorimetric assay system in homogeneous format has been developed using hydrogen peroxide (H2O2) as a model analyte. H2O2 is added to o-phenylenediamine/horseradish peroxidase solution, and allowed to react for 10 min. Then, unmodified gold nanoparticles that serve as “reaction indicators” are added to the reaction solution. The resulting mixture color changes dramatically from red to blue. The reason is that azoaniline, a horseradish peroxidase-catalyzed oxidation product, induces the nanoparticle aggregation. Using this approach, H2O2 can be semiquantitatively determined over the concentration range of ∼4 orders of magnitude by the naked eye. If the observed peak intensity at 420 nm is used for the construction of the calibration plot, hydrogen peroxide can be accurately determined down to concentration levels of 1.3 × 10−6 M. Compared with the conventional electrochemical protocol, this sensing system offers several important advantages: (1) ability to be monitored by the naked eye, (2) avoiding the need of surface modification of electrodes or gold nanoparticles and (3) detection in homogeneous solution. It is worthy of note that this efficient and convenient strategy is also suitable for the detection of other species, such as glucose and cholesterol.  相似文献   

11.
《中国化学快报》2019,30(12):2359-2362
A simple visual method for DNA detection during the formation of gold nanoparticles (AuNPs) was developed based on different electrostatic properties of single strand DNA (ssDNA) and double strand DNA (dsDNA). Since the ssDNA is easy to bind to AuNPs due to its exposed bases which could prevent salt-induced aggregation of AuNPs. The dsDNA always present negative charge because its negatively charged phosphate backbone is exposed. In this case, the dsDNA could disturb the adsorption between dsDNA and AuNPs and result in non-aggregation of AuNPs. After hybridization, chloroauric acid and ascorbic acid were added to the mixture solution, and the solution changed to red immediately and turned to purple in 10 min in the present of target DNA. TEM results confirmed that the change of color stemed from aggregation of AuNPs. In order to obtain accurate results by naked eye, the DNA detection assay should be conducted under pH 7.0.  相似文献   

12.
A simple visual method for DNA detection during the formation of gold nanoparticles (AuNPs) was developed based on different electrostatic properties of single strand DNA (ssDNA) and double strand DNA (dsDNA). It could identify target DNA in 10 min.  相似文献   

13.
An effective method to synthesize directly a hard composite material containing uniformly dispersed nanogold particles chemically bonded with a stereospecific, crystalline polymer matrix has been developed. Syndiotactic polypropylene was synthesized and functionalized to have a hydroxyl terminal group (sPPOH) via a metallocene catalysis with a selective chain transfer. Next, sPPOH was activated to react with ethylene sulfide forming the thiol‐terminated polymer, sPPSH. sPPSH was then chemically bonded to gold nanoparticles (AuNPs) formed in situ via a reduction of HAuCl4. The bonding between thiol and AuNP stabilized the AuNPs and led to the formation of sPPAuNPs composite containing uniformly‐dispersed AuNPs of a 19–40 nm size without noticeable aggregation. Furthermore, the chemical bonding of AuNPs has afforded sPPAuNPs a thermal degradation temperature (TD) 49.4 °C higher than the pristine sPP or sPPOH and 25.7 °C higher than sPPSH without any adverse effect on the crystalline temperature and melting temperature. In addition, the characteristic UV‐Vis absorption wavelength of sPPAuNPs remains the same at various temperatures, thus indicating the independence of optical property on temperature as well as the good thermal stability of the sPPAuNPs composite. 1H NMR, 13C NMR, FESEM, STEM, XPS, TGA and DSC were used to investigate the molecular structure, morphology and thermal properties of the resulting sPPAuNPs nanocomposite. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
Gold nanoparticles (AuNPs) were synthesized by reduction of chloroauric acid (HAuCl4) aqueous solution with hydrazine monohydrate. The AuNPs were immediately treated with cysteamine to obtain amine‐functionalized nanoparticles (Au‐NH2). The reaction of Au‐NH2 with epichlorohydrin and subsequent treatment with sodium hydroxide gave epoxidized AuNPs (Au‐EP). Then, thiol‐capped AuNPs (Au‐SH) were synthesized by reaction of Au‐EP with cysteamine. A ‘grafting to’ approach was utilized to graft bromine‐terminated poly(N ,N ′‐dimethylaminoethyl methacrylate), synthesized via aqueous atom transfer radical polymerization, with various molecular weights (6280, 25 800, 64 200 and 87 600 g mol−1) onto Au‐SH to obtain Au‐P1, Au‐P2, Au‐P3 and Au‐P4 samples, respectively. All samples were exposed to temperature and pH variations, and Z‐average diameter was monitored using dynamic light scattering. According to the results, polymer‐grafted nanoparticles collapsed at lower temperatures with increasing solution pH for all molecular weight ranges due to deprotonation of tertiary amine groups. However, higher molecular weight polymers were more sensitive to pH variation especially in alkaline media. Also, a high degree of agglomeration was observed for Au‐P4 nanoparticles in alkaline media on increasing the temperature to 55 and 65 °C.  相似文献   

15.
Huy GD  Zhang M  Zuo P  Ye BC 《The Analyst》2011,136(16):3289-3294
A colorimetric assay has been developed for the simultaneous selective detection of silver(I) and mercury(II) ions utilizing metal nanoparticles (NPs) as sensing element based on their unique surface plasmon resonance properties. In this method, sulfhydryl group modified cytosine-(C)-rich ssDNA (SH-C-ssDNA) was self-assembled on gold nanoparticles (AuNPs) to produce the AuNPs-C-ssDNA complex, and sulfhydryl group modified thymine-(T)-rich ssDNA (SH-T-ssDNA) was self-assembled on silver nanoparticles (AgNPs) to produce the AgNPs-T-ssDNA complex. Oligonucleotides (SH-C-ssDNA or SH-T-ssDNA) could enhance the AuNPs or AgNPs against salt-induced aggregation. However, the presence of silver(I) ions (Ag(+)) in the complex of ssDNA-AuNPs would reduce the stability of AuNPs due to the formation of Ag(+) mediated C-Ag(+)-C base pairs accompanied with the AuNPs color change from red to purple or even to dark blue. Moreover, the presence of mercury(II) ions (Hg(2+)) would also reduce the stability of AgNPs due to the formation of Hg(2+) mediated T-Hg(2+)-T base pairs accompanied with the AgNPs color change from yellow to brown, then to dark purple. The presence of both Ag(+) and Hg(2+) will reduce the stability of both AuNPs and AgNPs and cause the visible color change. As a result, Ag(+) and Hg(2+) could be detected qualitatively and quantitatively by the naked eye or by UV-vis spectral measurement. The lowest detectable concentration of a 5 nM mixture of Ag(+) and Hg(2+) in the river water was gotten by the UV-vis spectral measurement.  相似文献   

16.
Spatial and electronic structure of gold nanoparticles (AuNPs) and AuNPs with thiol base self-assambled monolayers (SAMs) are reviewed. Theoretical and experimental data on the symmetry, bond lengths, band gaps and binding energies are presented. Coordination of sulfur and its compounds to Au structures and AuS bond length emphasized especially. The works on synthesis of thiol based SAMs on AuNPs are reviewed. The applications of EXAFS and photoelectron spectroscopy for the investigated SAMs on AuNPs are considered.  相似文献   

17.
A new general method, post-photoaffinity-labeling modification (PPALM), for constructing fluorescent saccharide biosensors based on naturally occurring saccharide-binding proteins, lectins, is described in detail. An active-site-directed incorporation of a masked reactive site into a lectin was conducted by using a photoaffinity labeling technique followed by demasking and then chemical modification to yield a fluorescent lectin. Two photoaffinity labeling reagents were designed and synthesized in this study. The labeling reagent with a photoreactive site appended through a disulfide link to a mannoside unit was bound to the saccharide-binding pocket of the lectin concanavalin A (Con A). After light irradiation, the mannoside unit was cleaved by reduction. The unique thiol group thus produced was site-specifically modified with various fluorescent groups (dansyl, coumarin, or dimethylaminobenzoate derivatives) to afford fluorescent Con As. The labeling site was characterized by protease-catalyzed digestion followed by HPLC, MALDI-TOF MS, and tandem mass-mass spectrometry; these methods indicated that the photolabeling step is remarkably site specific. Strong fluorescence was observed in the engineered Con A with a fluorophore, and the emission changed sensitively upon saccharide complexation. The binding constants for various saccharides were determined by fluorescence titration and demonstrated that the binding selectivity and affinity of the engineered Con As are comparable to those of native Con A. The red shift of the emission maximum, the decrease in the fluorescence anisotropy of the dansyl unit, and the increase in the twisted intramolecular charge transfer emission caused by sugar binding to the engineered Con A explicitly indicate that the microenvironment of the appended fluorophores changes from a restricted and relatively hydrophobic environment into a rather freely mobile and hydrophilic environment.  相似文献   

18.
Xu  Jingyue  Li  Ying  Bie  Jiaxin  Jiang  Wei  Guo  Jiajia  Luo  Yeli  Shen  Fei  Sun  Chunyan 《Mikrochimica acta》2015,182(13):2131-2138

A sensitive, specific and rapid colorimetric aptasensor for the determination of the plasticizer bisphenol A (BPA) was developed. It is based on the use of gold nanoparticles (AuNPs) that are positively charged due to the modification with cysteamine which is cationic at near-neutral pH values. If aptamers are added to such AuNPs, aggregation occurs due to electrostatic interactions between the negatively-charged aptamers and the positively-charged AuNPs. This results in a color change of the AuNPs from red to blue. If a sample containing BPA is added to the anti-BPA aptamers, the anti-BPA aptamers undergo folding via an induced-fit binding mechanism. This is accompanied by a conformational change, which prevents the aptamer-induced aggregation and color change of AuNPs. The effect was exploited to design a colorimetric assay for BPA. Under optimum conditions, the absorbance ratio of A 527/A 680 is linearly proportional to the BPA concentration in the range from 35 to 140 ng∙mL−1, with a detection limit of 0.11 ng∙mL−1. The method has been successfully applied to the determination of BPA in spiked tap water and gave recoveries between 91 and 106 %. Data were in full accordance with results obtained from HPLC. This assay is selective, easily performed, and in our perception represents a promising alternative to existing methods for rapid quantification of BPA.

The negatively-charged anti-BPA aptamers can absorb onto the positively-charged cysteamine-capped AuNPs (cysteamine-AuNPs) via electrostatic interactions, which can cause the aggregation of AuNPs accompanied by a red-to-blue color change. In the presence of BPA, the specific binding of BPA to the aptamers induces the conformation changes of anti-BPA aptamers, which can release the aptamers from cysteamine-AuNPs and thus prevent the aggregation and color change of cysteamine-AuNPs.

  相似文献   

19.
A colorimetric sensor has been developed in this work to sensitively detect α-glucosidase activity and screen α-glucosidase inhibitors (AGIs) utilizing unmodified gold nanoparticles (AuNPs). The sensing strategy is based on triple-catalytic reaction triggered by α-glucosidase. In the presence of α-glucosidase, aggregation of AuNPs is prohibited due to the oxidation of cysteine to cystine in the system. However, with addition of AGIs, cysteine induced aggregation of AuNPs occurs. Thus, a new method for α-glucosidase activity detection and AGIs screening is developed by measuring the UV–vis absorption or visually distinguishing. A well linear relation is presented in a range of 0.0025–0.05 U mL−1. The detection limit is found to be 0.001 U mL−1 for α-glucosidase assay, which is one order of magnitude lower than other reports. The IC50 values of four kinds of inhibitors observed with this method are in accordance with other reports. The using of unmodified AuNPs in this work avoids the complicated and time-consuming modification procedure. This simple and efficient colorimetric method can also be extended to other enzymes assays.  相似文献   

20.
A novel 1,3-di(2′,4′-dinitrophenylhydrazone)-5-nitrobenzene receptor has been synthesized by simple steps with good yields. The anion recognition properties were studied by ultraviolet-visible (UV-Vis) spectroscopy. The results showed that the receptor had a higher affinity to F?, CH3COO? and H2PO 4 ? , but no evident binding with Cl?, Br?, and I?. Upon addition of the three former anions to the receptors in dimethyl sulphoxide (DMSO) at 298.2 ± 0.1 K, the solution exhibited an obvious color change from yellow to mauve that could be observed by the naked eye, thus the receptor could act as a fluoride ion sensor even in the presence of other halide ions. The UV-Vis data indicates that a 1:1 stoichiometry complex formed through hydrogen-bonding interactions between receptor and anions. The hydrogen bond between phenylhydrazone –NH and acetate or fluoride anion was determined on the basis of 1H nuclear magnetic resonance (NMR) experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号