首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Polyaniline (PANI) was prepared by the chemical oxidative polymerization of aniline, and ZnO, with the mean particle size of 28 nm, was synthesized by a non-aqueous solvent method. The organic-inorganic PANI/ZnO hybrids with different mass fractions of PANI were obtained by mechanically mixing the prepared PANI and ZnO. The gas sensing properties of PANI/ZnO hybrids to different volatile organic compounds (VOCs) including methanol, ethanol and acetone were investigated at a low operating temperature of 90°C. Compared with the pure PANI and ZnO, the PANI/ZnO hybrids presented much higher response to VOCs. Meanwhile, the PANI/ZnO hybrid exhibited a good reversibility and a short response-recovery time, implying its potential application for gas sensors. The sensing mechanism was suggested to be related to the existence of p-n heterojunctions in the PANI/ZnO hybrids.  相似文献   

2.
冯秋霞  于鹏  王兢  李晓干 《物理化学学报》2015,31(12):2405-2412
采用静电纺丝法成功制备了Y掺杂的ZnO纳米纤维.并通过X射线衍射(XRD),扫描电子显微镜(SEM),能量色散X射线(EDX),透射电子显微镜(TEM)以及热重差热分析(TG-DTA)等手段对样品的结构和形貌进行了表征分析.同时用纯的ZnO和Y掺杂的ZnO纳米纤维制备了传感器,对浓度为(1-200)×10-6 (体积分数)丙酮的气敏特性进行了测试分析.测试结果表明,可以通过简单控制纳米纤维中Y的含量,来微调该传感器的气敏特性.同时也发现通过Y掺杂, ZnO纳米纤维对丙酮的气敏特性有所改善,表现出很高的响应.纯ZnO和Y掺杂ZnO制成的传感器对几种潜在干扰气体表现出良好的选择性,比如氨气、苯、甲醛、甲苯以及甲醇.本文最后也讨论了该传感器的气敏作用机理.  相似文献   

3.
Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (∼20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques.  相似文献   

4.
In the modern age, the most important and prevailing issue is the monitoring of human health. To address this, several devices have been developed and a need new materials investigated. The idea of textile-based smart sensors is emerging rapidly. In this regard, ICPs and ECPs have attracted the attention of researchers due to their mechanical adaptability to suit the characteristics of textile fabric. The lighter weight, stretchability and wearability, etc. are considered an advantage while selecting the material for developing sensors not only in health monitoring but also in biomedical, sports, and military fields. The idea behind wearable sensing devices is to enable easy integration of the sensor device into daily life routines. Such wearable sensors also have the potential for real time and online monitoring of human health and integrate with smart monitoring devices. The purpose of this review is to discuss the recent developments in smart monitoring sensors.  相似文献   

5.
The rapid development of internet and internet of things brings new opportunities for the expansion of intelligent sensors,and acetone as a major disease detection indicator(i.e.,diabetes) making it become extremely important clinical indicator.Herein,uniform mesoporous ZnO spheres were successfully synthesized via novel formaldehyde-assisted metal-ligand crosslinking strategy.In order to adjust the pore structure of mesoporous ZnO,various mesoporous ZnO spheres were synthesized by changing weight percentage of Zn(NO_3)_2·6 H_2 O to tannic acid(TA).Moreover,highly active heterojunction mesoporous ZnO/Co_3 O_4 has been fabricated based on as-prepared ultra-small Co_3 O_4 nanocrystals(ca.3 nm) and mesoporous ZnO spheres by flexible impregnation technique.Profit from nano-size effect and synergistic effect of p-n heterojunction,mesoporous ZnO/Co_3 O_4 exhibited excellent acetone sensing performance with high selectivity,superior sensitivity and responsiveness.Typically,5 wt% Co_3 O_4 embedded mesoporous ZnO sphere showed prominent acetone response(ca.46 for 50 ppm),which was about 11.5 times higher than that in pure ZnO sensing device,and it was also endowed high cyclic stability.The nanocrystals embedded hybrid material is expected to be used as promising efficient material in the field of catalysis and gas sensing.  相似文献   

6.
室温下, 采用原位聚合法, 以吡咯(PY)为单体, 氯化铁(FeCl3·6H2O)为氧化剂, 在塑料基片上聚合生长了聚吡咯(PPy)纳米微球. 然后在聚吡咯基片上生长ZnO种子, 将表面种有ZnO种子的PPy元件置于六次甲基四胺与硝酸锌的混合溶液中, 90 ℃水浴中, 在PPy微球上生长了ZnO纳米棒, 合成了PPy/ZnO异质纳米复合材料. 分别通过X射线衍射仪(XRD)和场发射扫描电镜(FESEM)对PPy/ZnO异质纳米复合材料的结构和形貌进行了表征. 制备了塑料基的PPy/ZnO异质纳米复合材料气体传感器, 在室温下, 对10×10-6-150×10-6 (体积分数)浓度范围的氨气进行了气敏测试, PPy/ZnO气敏元件对氨气响应的灵敏度基本呈线性关系, 且对甲醇、丙酮、甲苯等有机气体表现出很好的选择性. 最后, 对PPy/ZnO异质纳米复合材料的形成机理进行了简要分析.  相似文献   

7.
Solid electrolytes can be used in several different types of chemical sensors. A common approach is to use the equilibrium potential generated across a solid electrolyte given by the Nernst equation as the sensing signal. However, in some cases, stable electrode materials are not available to establish equilibrium potentials, so non-equilibrium approaches are necessary. The sensing signal generated by such sensors is often described by the mixed potential theory, in which a pair of electrochemical reactions establishes a steady state at the electrode, such that the electrons produced by an oxidation reaction are consumed by a reduction reaction. The rates of both reactions depend on several factors, such as electron exchange, active area, and gas phase diffusion, so establishment of the steady-state potential is complex and alternative explanations have been proposed. This paper will review and discuss the mechanisms proposed to explain the sensor response of non-equilibrium-based electrochemical sensors.  相似文献   

8.
The metabolic disorder of glucose in human body will cause diseases such as diabetes and hyperglycemia.Hence the determination of glucose content is very important in clinic diagnosing.In recent years,researchers have proposed various non-invasive wearable sensors for rapid and real-time glucose monitoring from human body fluids.Unlike those reviews which discussed performances,detection environments or substrates of the wearable glucose sensor,this review focuses on the sensing nanomaterials since they are the key elements of most wearable glucose sensors.The sensing nanomaterials such as carbon,metals,and conductive polymers are summarized in detail.And also the structural characteristics of different sensing nanomaterials and the corresponding wearable glucose sensors are highlighted.Finally,we prospect the future development requirements of sensing nanomaterials for wearable glucose sensors.This review would give some insights to the further development of wearable glucose sensors and the modern medical treatment.  相似文献   

9.
The electrical, optical and humidity sensor properties of nanostructured ZnO samples were investigated. The structural properties of Sn doped ZnO samples were characterized by X-ray diffraction and atomic force microscopy. It was found that the all samples have a hexagonal crystal structure. The electrical conductivity of the samples indicates that undoped and Sn doped ZnO samples exhibit the semiconducting behavior. The optical absorption method was used to determine the optical band gaps of the samples. The optical band gap and activation energy values of the ZnO samples were changed with Sn doping. The ZnO based on quartz crystal microbalance humidity sensors were prepared and sensing properties of the sensors were changed with Sn doping. The response time required to reach 70 % is about 13–16 s, while the recovery time from 70 to 30 % RH is about 13–15 s. The fast response of the sensors is due to easy diffusion of water molecules between ZnO nanopowders. The prepared sensors have a high reproducibility and sensitivity for humidity sensing applications.  相似文献   

10.
Jiménez-Cadena G  Riu J  Rius FX 《The Analyst》2007,132(11):1083-1099
Gas detection is important for controlling industrial and vehicle emissions, household security and environmental monitoring. In recent decades many devices have been developed for detecting CO(2), CO, SO(2), O(2), O(3), H(2), Ar, N(2), NH(3), H(2)O and several organic vapours. However, the low selectivity or the high operation temperatures required when most gas sensors are used have prompted the study of new materials and the new properties that come about from using traditional materials in a nanostructured mode. In this paper, we have reviewed the main research studies that have been made of gas sensors that use nanomaterials. The main quality characteristics of these new sensing devices have enabled us to make a critical review of the possible advantages and drawbacks of these nanostructured material-based sensors.  相似文献   

11.
Gas sensors are crucial in environmental monitoring, industrial safety, and medical diagnostics. Due to the rising demand for precise and reliable gas detection, there is a rising demand for cutting-edge gas sensors that possess exceptional sensitivity, selectivity, and stability. Due to their tunable electrical properties, high-density surface-active sites, and significant surface-to-volume ratio, nanomaterials have been extensively investigated in this regard. The traditional gas sensors utilize homogeneous material for sensing where the adsorbed surface oxygen species play a vital role in their sensing activity. However, their performance for selective gas sensing is still unsatisfactory because the employed high temperature leads to the poor stability. The heterostructures nanomaterials can easily tune sensing performance and their different energy band structures, work functions, charge carrier concentration and polarity, and interfacial band alignments can be precisely designed for high-performance selective gas sensing at low temperature. In this review article, we discuss in detail the fundamentals of semiconductor gas sensing along with their mechanisms. Further, we highlight the existed challenges in semiconductor gas sensing. In addition, we review the recent advancements in semiconductor gas sensor design for applications from different perspective. Finally, the conclusion and future perspectives for improvement of the gas sensing performance are discussed.  相似文献   

12.
Xu L  Zheng R  Liu S  Song J  Chen J  Dong B  Song H 《Inorganic chemistry》2012,51(14):7733-7740
Novel NiO@ZnO heterostructured nanotubes (NTs) were fabricated by the coelectrospinning method, consisting of external hexagonal ZnO shell and internal cubic NiO NTs. They are carefully investigated by scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy mapping, X-ray diffraction, and X-ray photoelectron spectroscopy techniques. A reasonable formation mechanism of the hierarchical NiO@ZnO NTs is proposed, which is discussed from the view of degradation temperature of different polymers and the amount of inorganic salts. They were then explored for fabrication of H(2)S gas sensors. The gas sensing test reveals that compared with the pure ZnO, NiO, and the ZnO-NiO mixed gas sensors, hierarchical gas sensor exhibits highly improved sensing performances to dilute hydrogen sulfide (H(2)S) gas. The response of the optimum NiO@ZnO NTs sensor to 50 ppm H(2)S increases as high as 2.7-23.7 times compared to the other sensors, whereas the response and recovery times also become shorter considerably. These enhanced gas sensing properties are closely related to the change of nanostructure and activity of ZnO and NiO nanocrystals as well as combination of homo- and heterointerfaces in the optimum gas sensor, which are confirmed by a series of well-designed experiments.  相似文献   

13.
The discharge of heavy metal ions into water resources as a result of human activities has become a global issue. Contamination with heavy metal ions poses a major threat to the environment and human health. Therefore, there is a dire need to probe the presence of heavy metal ions in a more selective, facile, quick, cost-effective and sensitive way. Conventional sensors are being utilized to sense heavy metal ions; however, various challenges and limitations like interference, overlapping of oxidation potential, selectivity and sensitivity are associated with them that limit their in-field applicability. Hence, nanomaterial based chemical sensors have emerged as an alternative substitute and are extensively employed for the detection of heavy metal ions as a potent analytical tool. The incorporation of nanomaterials in sensors increases their sensitivity, selectivity, portability, on-site detection capability and device performance. Nanomaterial based electrodes exhibit enhanced performance because surface of electrode at nano-scale level offers high catalytic potential, large active surface area and high conductivity. Therefore, this review addresses the recent progress on chemical sensors based on different nanomaterials such as carbon nanotubes (CNTs), metal nanoparticles, graphene, carbon quantum dots and nanocomposites for sensing heavy metals ions using different sensing approaches. Furthermore, various types of optical sensors such as fluorescence, luminescence and colorimetry sensors have been presented in detail.  相似文献   

14.
15.
This article outlines a novel material to enable the detection of hydrogen gas. The material combines thin-film metallic glass (TFMG), ultra-nanocrystalline diamond (UNCD), and ZnO nanorods (ZNRs) and can be used as a device for effective hydrogen gas sensing. Three sensors were fabricated by using combinations of pure ZNRs (Z), UNCD/ZNRs (DZ), and TFMG/UNCD/ZNRs (MDZ). The MDZ device exhibited a performance superior to the other configurations, with a sensing response of 34 % under very low hydrogen gas concentrations (10 ppm) at room temperature. Remarkably, the MDZ-based sensor exhibits an ultra-high sensitivity of 60.5 % under 500 ppm H2. The MDZ sensor proved very fast in terms of response time (20 s) and recovery time (35 s). In terms of selectivity, the sensors were particularly suited to hydrogen gas. The sensor achieved the same response performance even after two months, thereby demonstrating the superior stability. It is postulated that the superior performance of MDZ can be attributed to defect-related adsorption as well as charge carrier density. This paper also discusses the respective energy band models of these heterostructures and also the interface effect on the gas sensing enhancements. The results indicate that the proposed hybrid TFMG/UNCD/ZNRs nanostructures could be utilized as high-performance hydrogen gas sensors.  相似文献   

16.
Gas sensors are demanded in many different application fields. Especially the ever-growing field of batteries creates a great need for early hazard detection by gas sensors. Metal oxides are well known for gas sensing; however, moisture continues to be a major problem for the sensors, especially for the application in battery systems. This study reports on a new type of moisture protected gas sensor, which is capable to solve this problem. Sensitive nano-materials of CuO/Cu2O/ZnO:Fe heterostructures are grown and subsequently coated with an ultrathin hydrophobic cyclosiloxane-polymer film via initiated chemical vapor deposition to protect the sensor from moisture. The monomer 1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane is combined with the initiator perfluorobutanesulfonyl fluoride to obtain hydrophobic properties. Surface chemistry, film formation and preservation of functional groups are confirmed by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. It turns out that the hydrophobicity is retained even after annealing at 400 °C, which is ideal for gas sensing. Molecular distances in the polymer nanolayer are estimated by geometry optimization via MMFF94 followed by density functional theory. Compared with unprotected CuO/Cu2O/ZnO:Fe, the coated CuO/Cu2O/ZnO:Fe exhibit a much better sensing performance at a higher relative humidity, as well as tunability of the gas selectivity. This is highly beneficial for hazard detection in case of thermal runaway in batteries because the sensors can be used under high concentrations of relative humidity, which is ideal for Li–S battery applications.  相似文献   

17.
Due to constant necessity to have reliable and sensitive gas sensors in many contemporary technologies, there is a permanent need for development of new sensing platforms with good sensing properties. Here, we demonstrate a novel type of resistive gas sensors based on carbonized polyaniline/Nafion composites. The sensing mechanism of such sensors is based on the sorption of gases by the composites which induce Nafion swelling and decreasing of conductivity. Chemosensitive properties can be tuned by the (i) choice of carbon materials with different conductivities, (ii) Nafion content in the composite, and (iii) thickness of the composite layer. We have shown that the sensors respond to water, acetone, ethanol, and methanol vapors. For the last two cases, we have achieved high sensitivity, fast response, wide concentration range, and good recovery. The use of simultaneous two- and four-point techniques for these sensors provides an internal control of the sensor integrity.  相似文献   

18.
《中国化学快报》2020,31(8):2071-2076
Semiconducting metal oxides have been considered as effective approach for designing high-performance chemical sensing materials. In this paper, a kind of metal-organic frameworks ZIF-8 was used as sacrificed template to prepare porous ZnO hollow nanocubes for the application in gas sensing. It is found that changing calcination temperature and solvent can greatly influence the morphology of the material, which finally affects the gas sensing performance. Acetylene-sensing properties of the sensors were investigated in detail. It can be clearly seen that the material used methanol as reaction solvent with the decomposition at 350 °C for 2 h (ZnO-350-M) showed the optimal formaldehyde-sensing behaviors compared with other materials prepared in this experiment. The dynamic transients of the ZnO-350-M-based sensors demonstrated a high response value (about 10), fast response and recovery rate (4 s and 4 s, respectively) and good selectivity towards 100 ppm (part per million) formaldehyde as well as a low detectable limit (1 ppm). As exemplified for the sensing investigation towards formaldehyde, the porous ZnO hollow nanocubes showed a significantly improved chemical sensitivity due to the highly synergistic effects from the well exposed surfaces, defect states and the robust ZnO.  相似文献   

19.
《Analytical letters》2012,45(11):2067-2096
Abstract

Nanostructures such as nanotubes (NTs), nanowires (NWs), and nanoparticles present new opportunities as sensing platforms for biological and environmental applications. Having micrometer‐scale lengths and nanometer‐scale diameters, NTs and NWs can be manipulated with current microfabrication, as well as self‐assembly techniques to fabricate nanoscale devices and sensors. Alignment, uniform dispersion, selective growth, and diameter control are parameters that are critical to the successful integration of nanostructures into sensors and devices. Overcoming these challenges should lead to sensors with better selectivity, sensitivity, and longer operational lifetime. This review discusses biosensors based on nanostructured material.  相似文献   

20.
Biosensors have shown great potential for health care and environmental monitoring. The performance of biosensors depends on their components, among which the matrix material, i.e., the layer between the recognition layer of biomolecule and transducer, plays a crucial role in defining the stability, sensitivity and shelf-life of a biosensor. Recently, zinc oxide (ZnO) nanostructures and thin films have attracted much interest as materials for biosensors due to their biocompatibility, chemical stability, high isoelectric point, electrochemical activity, high electron mobility, ease of synthesis by diverse methods and high surface-to-volume ratio. ZnO nanostructures have shown the binding of biomolecules in desired orientations with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes ZnO nanostructures suitable candidate for future small integrated biosensor devices. This review highlights recent advances in various approaches towards synthesis of ZnO nanostructures and thin films and their applications in biosensor technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号